Upcoming

* Homework 3 posted; due March 22
* Literature review due March 20

* Paper presentation instructions posted:

http: le.cs.umass.edu/~brun/class/2018Spring/CS621

pdf

* winter is coming

Reproducing Field Failures

Lab Failures

When you are developing a piece of software,
and you run it, use it, and it fails, what do you
do to debug it?

Field Failures

After you have shipped a piece of software, and
a user runs it, uses it, and it fails, what can the
developer do to debug it?

Let’s try something

Describe for me a time your software failed.

Now describe it for me as your grandpa would.

Problems with Field Failures

* Users skip details

* Users describe what went wrong, not what
they did

* Users aren’t programmers, so they don’t know
what’s important

* Even if the users are programmers, they didn’t
build system =» don’t know what’s important

3/6/18

http://people.cs.umass.edu/~brun/class/2018Spring/CS621/paperPresentation/paperPresentation.pdf

What’s worse than a user who doesn’t
know what’s important to report?

A user who “figured out” the system,
understand exactly what the system must be
doing, and is telling you his or her inferences,
not observable effects.

How do we deal with field failures?

* We could record everything that happens at
runtime, ship it back to developers.

What’s wrong with this?

How do we deal with field failures?

* For privacy, only send stuff when something
goes wrong.

What'’s wrong with this?

How do we deal with field failures?

* Anonymize inputs?
* Record sparingly?
* Deduce stuff locally?

* Find alternate inputs that lead to the same
bug?

Let’s back up

* Why worry about field failures?
— Testing is great, but you can’t catch everything
— Software ships with bugs all the time

* Why are field failures hard to debug?
— You don’t know the circumstances

— The environment (other installations, etc.) may
play a role

— Can’t rely on the user

Goals

* Capture the steps necessary to replicate a bug
* Generate a test case automatically
* No effort from user

3/6/18

There are some existing techniques
Recrash)

* Monitor a running JVM, record inputs,
method invocations

* If an exception is uncaught, write down the
test case that generated it

* Privacy issues, 20X overhead (sometimes),
deep call stacks cause problems

There are some existing techniques
Scarpe

* Isolate subsystems and monitor what flows in
and what flows out

* Replay exceptions, but only within a
subsystem

* Faster but still 20X overhead,
hasn’t been evaluated very well

There are some existing techniques
BugRedux

* Use symbolic execution to guide test generation
* Observe an execution, record constraints that get
you down a path.

* When an exception happens, figure out a
different input that would follow the same path

Better for privacy, but constraint logging has to be
detailed (and slow) or input reconstruction won’t
work + symbolic execution scales poorly

Chronicler

Key idea: deterministic parts of the program are
easy to recreate. It’s the nondeterminism that
causes many bugs.

Nondeterminism: output dependence on factors
other than initial program state and input

What are some nondeterminism examples?

So what kinds of things do we need to watch?

* User input (we'll call that nondeterminism)
— file.read()
— buf.readLine()
— etc.
* Native calls
— System.currentTimeMillis()
— Random()
— etc.

How does Chronicler capture nondeterminism?

Wrap the VM and log at a higher level

Tanguage VM (NET CLR, JVM, cic)

Language API

I istic API

Nondeterministic AP

I A Chronicler A

AI A

\J

Outside world (sources of
nondeterminism)

3/6/18

3/6/18

How to use Chronicler Some implementation details

* Scan the API
— Mark all system methods as nondeterministic
— Mark anything that calls those as nondeterministic

— And propagate the nondeterministic upward
%W}—» Chronicler

* Record and Replay

Tnstrumented for
replay

Bug fixed by developer

— Instrument bytecode to record results of
nondeterministic method calls

— When replaying, simply insert recorded values
— Can even work for GUI events (e.g., swing)

What can this log? Implementation strategy

* Nondeterministic event dispatching, (some)
thread switches, GUI events, randomness

* If log gets too big, flush it to a file on disk

Instrumentation time ~ ——#>

In the lab

Visit each class in the
application

(Binary for Deployment)
Add logging code
Find every invocation of
methods
(Binary for Replay in Lab) ‘

Replace with replay code

When do you Write OUt a teSt to deliVer to the g Execution replaying in the Read top value of this }_' Advance pointer to next }_’ Ad\'ancunmx\)vglilel(‘
£ needstoreadlog | thread's jog et -ached the en
dEVe|Oper? = S ky hread's log log entry hed the end
Performance (Dacapo benchmark) What are some Chronicler weaknesses?
_ * privacy is not addressed
S — » some threads and processes are not recorded
fop ™
B * Java can do some crazy things, like mutate its
it B #Bascne own method’s parameters and use reflection
—_ | | Chronicler . .
s = ket to redefine a method at runtime
lnd:::n: | so0sd
iy
xalan ™ |
o 20000 40000 60000 80000 100000 120000
Average benchmark time (ms)

Let’s identify the 3 keys

What is the scientific question?
What's the key new idea that allows answering it?

How do you measure the success of the answer?

Let’s identify the 3 keys

What is the scientific question?
* How to replay field bugs in the lab
What’s the key new idea that allows answering it?

How do you measure the success of the answer?

Let’s identify the 3 keys

What is the scientific question?

* How to replay field bugs in the lab

What's the key new idea that allows answering it?
* Recoding all nondeterminism

How do you measure the success of the answer?

Let’s identify the 3 keys

What is the scientific question?

* How to replay field bugs in the lab

What’s the key new idea that allows answering it?
* Recoding all nondeterminism

How do you measure the success of the answer?
* Measure overhead

* Use it to find real bugs

3/6/18

