
1/29/18

1

More Course Overview:
Models, Tests, Bugs, and Symbols

Homework 1 coming up

• By January 29
Pick one 2-hour slot on
https://tinyurl.com/CS621HW1SignUp

• The slots go from February 1 to 8
• The assignment will take place entirely during

the slot

What is Homework 1?

• You will get an opportunity to analyze several
real-world defects and debug them.

• You’ll use modern tools to help understand
and fix errors.

• The assignment will be a guided one-on-one
session.

Last time

What did we talk about?

Static analysis

• Using the source code to improve a program
• Manual code reviews and inspections
• Automatic inference of properties, proving

Improve the software quality

Dynamic analysis

• Using the program executions to improve the
program

• Manual with debuggers, etc.
• Automatic inference over logged behavior
• Does not need source code or even binaries

Improve the software quality

1/29/18

2

Any questions?

Areas we will cover in this course

• Static analysis
• Dynamic analysis
• Model checking
• Mutation testing
• Bug localization
• Symbolic execution

areas for your projects

As we go over each topic…

• Think whether this sounds interesting
• Think about what kind of a tool you could

make that uses this

• You are all programmers:
think about things you’ve done while
programming that were hard, and how these
kinds of analysis might make it easier

Model checking

• I actually meant:
– Model checking
– Model inference
– Model simulation

Model inference

problem:

I have a system (or a log of executions).
I want a small, descriptive model of what the
system does.

Model can be used to understand the system,
debug, detect anomalies, document.

Logs are hard to read

1/29/18

3

Model inference

• First, parse out the executions

check-out à valid-coupon à check-out à reduce-price à get-credit-card

check-out à invalid-coupon à check-out à reduce-price à get-credit-card

check-out à get-credit-card

• …hard to understand

Infer the model

• Magic!

So what’s the magic?

• Lots of ways to do it:
– Try merging the executions into a small model

– Mine properties then build a model from the
properties alone

– Use static or dynamic analysis to determine what
events can legally take place after others

K-Tails

• let’s use k=1 as an example
• merge two states if their name is the same

• (k=2 means merge two states if their name,
and all the states to which they have
transitions are “the same”)

• and so on for larger k

Model checking
• Given a property and a model, check if the

model satisfies that property

• Reduce-price always followed by get-credit-card?

Model simulation

• Given a model, you can generate new
executions that have not been observed before!

1/29/18

4

Mutation testing

• Evaluate the tests
– not the program!
– not a type of testing!
– does not improve a program directly; improves tests!

Mutation
• Take a program
• Create a mutant with one or a few small

changes:
– change a + to a –
– add/subtract 1 somewhere
– increment/decrement a loop counter
– delete a line
– insert a line from one place in another

• Repeat to create many mutants

Why create mutants?
• Suppose you have a program and a test suite
• All the tests pass
• What does that mean about your program?

1. Program is correct
2. Tests only test parts of the program that are

correct and the rest, who knows
3. Tests and program may be written by the same

person, using the same implicit assumptions

Let’s write some tests
// returns the factorial of the input n
int factorial (int n) {

if (n <= 0)
return 1;

if (n == 1)
return 1;

else
return n * factorial(n-1);

}

OK, so how do we test the tests?

• Run the tests on the main program

• Run the tests on the mutants
– what if the tests pass?

Mutation testing evaluates the tests

• If a test “kills a mutant” then that’s a good test
• If some mutants aren’t killed, the test suite is

lacking
• Solution: write more tests!

• Is it OK to write more tests until all mutants
are killed and then stop?

1/29/18

5

Consider this mutant
// returns the factorial of the input n
int factorial (int n) {

if (n <= 0)
return 1;

if (n == 1)
return 1;

else
return n * factorial(n+1);

}

Consider this mutant
// returns the factorial of the input n
int factorial (int n) {

if (n <= 2)
return 1;

if (n == 1)
return 1;

else
return n * factorial(n-1);

}

Consider this mutant
// returns the factorial of the input n
int factorial (int n) {

if (n == 0)
return 1;

if (n == 1)
return 1;

else
return n * factorial(n-1);

}

Bug localization

• Narrowing down the most likely place to
contain a bug

Thank you to Curino and Giusti for contributing to these slides

Failure-inducing input
• This HTML input makes Mozilla crash

(segmentation fault).
• Which portion is the failure-inducing one?

Thank you to Curino and Giusti for contributing to these slides

Delta Debugging: Try half the input

• Will the program still crash?

1/29/18

6

Minimizing via binary search

• 57 test to simplify the
896 line HTML input to
the “<SELECT>” tag that
causes the crash

• Each character is
relevant (as shown from
line 20 to 26)

• Only removes deltas
from the failing test

Impact analysis

• Run the code on passing test cases
• Run the code on failing test cases
• Keep track of which lines execute

• Lines that executes only on passing test cases
are OK. So are lines that execute on both.

• Lines that only execute on failing test cases
are suspicious.

What else can you do to localize a bug?

Regressions: suppose a test used to pass and
now fails.
– consider the latest changes
– do delta debugging on the changes

Can we automatically fix bugs?

Take a program that passes most test cases

and fails one or two, and tweak it

– write (tweak) a very similar program

(with minimal change) that passes all the tests
[see Weimer et al., Automatically Finding Patches Using Genetic Programming, ICSE 2009]

localizing and auto-fixing:

great project areas

Symbolic execution

• “Think” about the code, rather than execute
it, but execute it anyway. But don’t use
numbers. Just think about the numbers.

• Clear, right?

void test(int x, int y) {
if (x > 0) {

if (y == hash(x))
S0;

else
S1;

if (x > 3 && y > 10)
S3;

else
S4;

}
}

Thank you to Willem Visser for contributing to these slides

x > 0 and y==hash(x)

x > 0 and y!=hash(x)

x > 3 and y > 10

x > 0 and (x <= 3 or y <= 10)

1/29/18

7

Why symbolic execution?

• A different way to reasoning about the code
• Can determine what parts are reachable and

under what conditions
• Can be compared to developers’ expectations

about those conditions
• Can be used to document
– For example, “this method can only be called if x>0”

or “this method throws an exception is pts == null”

