1/24/18

CS 621
Course Overview:
Static and Dynamic Analyses

Last time

What did we talk about?

Afghanistan Stability / COIN Dynamics ~ g

= OUTSIDE SUPPORT
ANSF TO INSURGENT
TACTICA FACTIONS

124 = INSURGENTS

COALITION
CA

POPULATION - A K
CONDMONS | | n -+ -+ - -
& BELIEFS A1) %

PRIORITIES

A POPULAR -, P
N - <+ SUPPORT * 3 V=

WORKING DRAFT - V3

Why is it important to study
software engineering?

I"H$%& ()% + #

o - %H'$/0/1'€)% 23" %5, 4%)3%/%1)%5), 4%*/06&+*) 2$%+1/"$%7"

— &IHSHHB2'9*+25%+0/"2$%/9%0+,()$%6#:+,)
— *J0B&+)2*A% 1/ SHIOS: + ) 9"+ &' DAV 3% &) EBY6S:) Yort-+ QYIRS

o <) )%+ )%0+24% )+ &&HY6O/ Yo+ BI0/1'&)#
— #/0)%9'=)3%9/,%9.))

o <),)%+,)%0+24%3)9)*$#%'2%#/9$;+,)%
— #10)%9'=)394%69,))
— #10)%0'=)3%'2%$:)%2)=9%)+#)%
o *4$/0),966+4'28%9/,%%:)%"68,+3)

43985 ()H&I6&SYo*+,-(/




Trends in Software Expansion (gemstein, 1997)

1/24/18

Significant increase in software control

+1960
- 8% of F-4 Fighter capability was
provided by software

+2000
- 85% of F-22 Fighter capability is
provided by software

GAO, Report to the Committee on Armed Services, U.S. Senate, March 2004, pg. 4

Projection
1000 —————
6:
475
13_o
Factor 1% 5=
47
The ratio 3
of machine ;’
lines of S
codetoa /
source line
of code
Order of Magnitude Increase Every Twenty Years E
T T T T T T
1 | I I I I I I
1960 1965 1970 1975 1980 1985 1990 1995 2000
Machine Macro HighLevel  Database Ondine  Prototyping | Subsecond Object Large Seale
Instructions  Assembler  Language  Manager Time Oriented  Reuse
Sharing | Programming
Regression 4GL Small
Testing Seale
Reuse
#5968 (
o Y08

1"2 3440005(6-'178$5-.94:1;<0;.$47#"=187-.4&'=&;><51'76

— *8727%.%%+;+(<('%7(+?;#68.%+01%&+@;$+$;';+0; (+?%$+#&'-+#'(+"- 72
$8.#8&9+7;&%8>%. (+-2?2+'1%+"-; ("+-AR;B%¢BC!

— *1#2+'-0%$+#&'-+'1%+D;>;6+@I(YR+GIBCB+@%";8(%+;+$;; @; (%+
->06.76-0+";8(%$+#'(+2.-286(#-&+(<('%7+-+2;#6

— E--/+'0-4$;<(+- 2+ 2#FH$%0+ 7 #&' Y% &; &" %o +'-+2#G+'1%+2.-@6%7

o L#,&%H#>%
1"2 3440005#7;587&5%%$84:;.&-6$4#(; (‘% & %|.%251'76

— J%8(%$+;+7-$86%+$%>%6-2WBBKB+01#"1+;((87%$+'1;'+'1%+

1- #L-&';6+>%6-"#'<+"-72-8%8&'+0-86$+&-'+->% . ? 6RO +MN; @ 6%

— D-'+.8%6+7-L#; 8% B+6%;$#8& 9+ - T 6B #-&+.-8916<+KO+(%"-&$(+
i2'%.+6;88"1

HS%6"&' () (*"#+,-(/

. 01(23,.3&1(45
6+*'(",$(4B".&(9:";(",
8;;/9 <==;+,1.&>*"2@A4)'B)@+-,C/
. D8$9:":9-"(E&"#(F$G&.3&1L1) H
+ D8$399+-,#%,;(%+::(;3'B(/:3*5($,; +&$:1(1.&+,~(
;8%5(9:";>
@:"9%:$%;+" +E+&BHS E+&OS&ISI>

Any guestions?

What is Homework 17?

* You will get an opportunity to analyze several
real-world defects and debug them.

* You'll use modern tools to help understand
and fix errors.

* The assignment will be a guided one-on-one
session.




IS8 (VX" +("* Yo(+"#$%&'( ., 4

1+$+01($*$,%'0"
2%*$301($*$,%'0’
4"#5,(165170*8

« 49+$+0"(+5'+0*8

- :98(,"1$,0;$+0"
1%3<",01(5=519+0"

!||#$||!%

As we go over each topic...

I' Think whether this sounds interesting

I' Think about what kind of a tool you could
make that uses this

I You are all programmers:
think about things you’ve done while
programming that were hard, and how these
kinds of analysis might make it easier

Manual Reviews

I Manual static analysis methods

" Reviews, walkthroughs, inspections
I Most can be applied at any step in the lifecycle
I Have been shown to improve reliability, but

" often the first thing dropped when time is tight

" labor intensive

" often done informally, no data/history, not repeatable

Areas we will cover in this course

I Static analysis

I Dynamic analysis
I Model checking

I Mutation testing

! Bug localization

I Symbolic execution

areas for your projects

Static Analysis

* Two kinds we’ll consider:
— Manual

— Automatic

Reviews and walkthroughs

* Reviews

— author or one reviewer leads a presentation of the
artifact

— review is driven by presentation, issues raised

* Walkthroughs

— usually informal reviews of source code
— step-by-step, line-by-line review




5598 () "H

o Y- (U HSUE )
—4).0-1/O31" (4" -5H/$.) &kt
— #(5"(+(&-""/6-875.)3"8/9/$.4$-.-" )"
— 48/6:/0)8%.-").
— O-" L5 (") < (H-$9.) ~4<

!||#$||!%

Experimental results

software inspections have repeatedly been
shown to be cost effective

increases front-end costs

~15% increase to pre-code cost

decreases overall cost

IBM study

* Doubled number of lines of code produced
per person

— some of this due to inspection process
* Reduced faults by 2/3
* Found 60-90% of the faults

* Found faults close to when they were
introduced

The sooner a fault is found the less costly it is to fix |

Why are inspections effective?

* Knowing the product will be scrutinized causes
developers to produce a better product
(Hawthorne effect)

* Having others scrutinize a product increases
the probability that faults will be found

* Walkthroughs and reviews are not as formal
as inspections, but appear to also be effective

— hard to get empirical results

What are the deficiencies?

* Tend to focus on error detection
— what about other "ilities -- maintainability, portability, etc?
* Not applied consistently/rigorously
— inspection shows statistical improvement
* Human-intensive and often makes ineffective use of
human resources

— skilled software engineer reviewing coding standards,
spelling, etc.

— Lucent study: %M LoCS added to 5M LoCS required ~1500
inspections, ~5 people/inspection

— no automated support

Automatic static analysis
What can you tell me about this code:

public int square(int x) {
return x * x;

}




Automatic static analysis
What about this code:

public double weird sqgrt(int x) {
if (x > 0)
return sqrt(x);
else

return 0;

1/24/18

Computing Control Flow Graphs (CFGs)

Procedure AVG

Sl count=0

S2 fread(fptr,n)

S3 if EOF goto S11
S4 if (n >=0) goto S7
S5 return (error)

S6 goto S9

S7 nums[count] = n
S8 count ++

S9 fread(fptr, n)

SI10 goto S3

SIl avg = mean(nums,count)
S12 return(avg)

CFG with Maximal Basic Blocks

Procedure AVG

S| count=0
S2 fread(fptr, n)
S3  while (not EOF) do
S4 if(n<0)
S5 return (error)
else
N nums[count] = n
S7 count ++
endif
S8 fread(fptr, n)
endwhile

S9 avg = mean(nums,count)
S10 return(avg)

CFG with Maximal Basic Blocks

Procedure AVG

Sl count=0
S2 fread(fptr, n)
S3  while (not EOF) do

S4  if(n<0)
S5 return (error)
else
S6 nums[count] = n
S7 count ++
endif
S8 fread(fptr, n)
endwhile

S9 avg = mean(nums,count)
S10 return(avg)

What about data flow?

We can do the same thing as with control flow

Uses of Data-Flow Analyses

Compiler Optimization
E.g., "#$%&#%'()"(&*&%0+"#

a=c+10]
suppose every assignment to ¢ that reaches this statement assigns 5

then a can be replaced by 15

&J needto know reaching definitionswhich definitions of
variablec reach a statement




Uses of Data-Flow Analyses

» Software Engineering Tasks
E.g., Debugging

suppose that a has the incorrect value in the statement

3 needdata dependence informatiorstatements that can
affect the incorrect value at a given program point

1/24/18

I"H SYRHH() S+ &+, #-)

| (&8 #'$%
" 01-)&2$331-1"
" HHH(81,/01%&4+5
| 6'#()71&"81&*/+-%1&%/21&"/&21"1-,$'1
" o/"-/(&3(/9
" 2 #&3(/9
| +$(28-1#%8HAS($")&5-#;8*<&2#"#&21;1'21'
5-#:8*<&1"%=&&

Dynamic analysis

* Assertions

* Detecting invariants

Assertions

public double area(int length, int width) {
assert (length >=0);
assert (width >=0);
return length * width;
}

Detecting invariants

public int square (int x) {
return x * Xx;

}

Let’s run the code and watch it. What can we tell about it?

Why dynamic detection?

* Isit sound?

— If you learn a property about a program, must it
be true?

* Is it complete?

— Do you learn all properties that are true about a
program?




1/24/18

So why dynamic detection?

* Code can be complex
— Static analysis may not scale to large programs.
* Sometimes, logs is all you have access to
— Not all code is open source. If you use libraries,
others’ code, you may only be able to observe
executions.
* Fast

» Detects properties of actual usage, rather than
all possible usage

What can we do with static and
dynamic analyses?

I You have:
" aprogram
" some tests that pass
" some tests that fail

What can we do with static and
dynamic analyses?

* You have:
— a program
— some tests that pass
— some tests that fail

- What can we do statically?

Statically, we can...

* Think about the code long and hard, and fix it.
* Can we step through a failing test case?
See where the code goes wrong?
— but to automate this, we have to know where the
code is “supposed” to go
* Can we reverse-engineer the conditions
necessary to get to the desired result?

What can we do with static and
dynamic analyses?

* You have:
— a program
— some tests that pass
— some tests that fail

‘What can we do dynamically?

I"#$%&'$((")*+,*'$#-

JH#ROL,¥'23,*$#3*245,67 ,*
+1&'1*(&#,5*,8,'/0,*+1,#
" (&#,5*01%0*,8,'/0,*2#*9$&(&#:5*0,505*2#("*$6,*%
(&;,("*4l:"
<,*$#*3,0,'07'23,*&#7$6 & SH05*$#3%6,$52#*
$42/0*01,*'23,
<,*$#*%/";*+&01*01,*'23,*$#3*5,,*&9*&0%32,5
$#"*4,00,6*2#*01,*0,505




