
1/24/18

1

CS 621
Course Overview:

Static and Dynamic Analyses

Last time

What did we talk about?

Why is it important to study
software engineering?

!"#$%&'()%*+,#

• -.%+"$/0/1'&)%'23"#$,4%"#)3%$/%1)%5),4%*/06&+*)2$%+1/"$%7"+&'$4
– &/#$%+%#'82'9'*+2$%+0/"2$%/9%0+,()$%#:+,)
– */06&+*)2*4%+1/"$%#/9$;+,)%7"+&'$4%*/"&3%&)+3%$/%$:)%#+0)%,)#"&$

• <:),)%+,)%0+24%,)*+&&#%9/,%+"$/0/1'&)#
– #/0)%9'=)3%9/,%9,))

• <:),)%+,)%0+24%3)9)*$#%'2%#/9$;+,)%
– #/0)%9'=)3%9/,%9,))
– #/0)%9'=)3%'2%$:)%$:)%2)=$%,)&)+#)%

• *"#$/0),%6+4'28%9/,%$:)%"68,+3)

!"#$%&$'(')#&%&$%*+,-.'(./

1/24/18

2

Trends in Software Expansion (Bernstein, 1997)

Expansion
Factor

The ratio
of machine

lines of
code to a
source line
of code

1

10

100

1000

1960 1965 1970 1975 1980 1985 1990 20001995

Order of Magnitude Increase Every Twenty Years

Machine
Instructions

Macro
Assembler

High Level
Language

Database
Manager

On-line

Regression
Testing

Prototyping

4GL

Subsecond
Time

Sharing
Small
Scale
Reuse

Object
Oriented

Programming

Large Scale
Reuse

142113
8175

4737.530

15

3

475
638

Projection

Significant increase in software control

•1960
− 8% of F-4 Fighter capability was
provided by software

•2000
− 85% of F-22 Fighter capability is
provided by software

GAO, Report to the Committee on Armed Services, U.S. Senate, March 2004, pg. 4

!""#$%&'(
•)**+,-./'-0&

1''2 3440005(6-'178$5-.94:1;<0;.$47#"=187-.4 &'=&;><51'76

– *8??%.%$+;+(<('%7(+?;#68.%+01%&+@;$+$;';+0;(+?%$+#&'-+#'(+"-728'%.(+
$8.#&9+7;&%8>%.(+-??+'1%+"-;('+-?+A;2%+A1;.6%(BC!

– *1#2+'-0%$+#&'-+'1%+D;>;6+@;(%+;'+D-.?-6/BC!B+@%";8(%+;+$;';@;(%+
->%.?6-0+";8(%$+#'(+2.-286(#-&+(<('%7+'-+?;#6

– E--/+'0-+$;<(+-?+2#%.F(#$%+7;#&'%&;&"%+'-+?#G+'1%+2.-@6%7

• !.#;&%H#>%

1''2 3440005#7;587&5%$84:;.&-6$4$#(;('%.(4;.#;&%I.%251'76

– J%8(%$+;+7-$86%+$%>%6-2%$+?-.+!.#;&%KB+01#"1+;((87%$+'1;'+'1%+
1-.#L-&';6+>%6-"#'<+"-72-&%&'+0-86$+&-'+->%.?6-0+;+MNF@#'+>;.#;@6%

– D-'+'.8%+?-.+!.#;&%IB+6%;$#&9+'-+(%6?F$%('.8"'#-&+.-8916<+KO+(%"-&$(+
;?'%.+6;8&"1

Any questions?

!"#$%"&'()(*"#+,-(./

• 01(23,.3&1(45
6+*'(",$(478".&(9:";(",
8;;/9 <==;+,1.&:>*"#=?@A4)!B)@+-,C/

• D8$9:";9-"(E&"#(F$G&.3&1();" H

• D8$399+-,#$,;(%+::(;3'$(/:3*$($,;+&$:1(I.&+,-(
;8$(9:";>

• @:";9$:$*;+",+9E+&9;7*"#$ E+&9;79$&J$I>

What is Homework 1?

• You will get an opportunity to analyze several
real-world defects and debug them.

• You’ll use modern tools to help understand
and fix errors.

• The assignment will be a guided one-on-one
session.

!"#$"!%

&

!"#$%&'()$*#(*"+("*,%(+"#$%&'-(.,$*

• /+$+01($*$,%'0'
• 2%*$301($*$,%'0'

• 4"#5,(165170*8
• 49+$+0"*(+5'+0*8

• :98(,"1$,0;$+0"*

• /%3<",01(5=519+0"*

Areas we will cover in this course

! Static analysis
! Dynamic analysis
! Model checking
! Mutation testing
! Bug localization
! Symbolic execution

areas for your projects

As we go over each topic…

! Think whether this sounds interesting
! Think about what kind of a tool you could

make that uses this

! You are all programmers:
think about things you’ve done while
programming that were hard, and how these
kinds of analysis might make it easier

Static Analysis

• Two kinds we’ll consider:
– Manual
– Automatic

Manual Reviews
! Manual static analysis methods

" Reviews, walkthroughs, inspections

! Most can be applied at any step in the lifecycle
! Have been shown to improve reliability, but

" often the first thing dropped when time is tight
" labor intensive
" often done informally, no data/history, not repeatable

Reviews and walkthroughs

• Reviews
– author or one reviewer leads a presentation of the

artifact
– review is driven by presentation, issues raised

• Walkthroughs
– usually informal reviews of source code
– step-by-step, line-by-line review

!"#$"!%

$

Inspections

• Software inspections
– formal, multi-stage process
– significant background & preparation
– led by moderator
– many variations of this approach

Experimental results

• software inspections have repeatedly been
shown to be cost effective

• increases front-end costs
~15% increase to pre-code cost

• decreases overall cost

IBM study

• Doubled number of lines of code produced
per person
– some of this due to inspection process

• Reduced faults by 2/3
• Found 60-90% of the faults
• Found faults close to when they were

introduced

The sooner a fault is found the less costly it is to fix

Why are inspections effective?

• Knowing the product will be scrutinized causes
developers to produce a better product
(Hawthorne effect)

• Having others scrutinize a product increases
the probability that faults will be found

• Walkthroughs and reviews are not as formal
as inspections, but appear to also be effective
– hard to get empirical results

What are the deficiencies?
• Tend to focus on error detection

– what about other "ilities�� -- maintainability, portability, etc?
• Not applied consistently/rigorously

– inspection shows statistical improvement
• Human-intensive and often makes ineffective use of

human resources
– skilled software engineer reviewing coding standards,

spelling, etc.
– Lucent study: ½M LoCS added to 5M LoCS required ~1500

inspections, ~5 people/inspection
– no automated support

Automatic static analysis

What can you tell me about this code:

public int square(int x) {
return x * x;

}

1/24/18

5

Automatic static analysis

What about this code:

public double weird_sqrt(int x) {
if (x > 0)

return sqrt(x);
else

return 0;
}

Computing Control Flow Graphs (CFGs)

Procedure AVG

S1 count = 0
S2 fread(fptr, n)
S3 while (not EOF) do
S4 if (n < 0)
S5 return (error)

else
S6 nums[count] = n
S7 count ++

endif
S8 fread(fptr, n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

S1

S2

S3

S4

S5 S6

S7

S8

S9

S10

entry

exit

F

T

F

T

Procedure AVG

S1 count = 0
S2 fread(fptr, n)
S3 if EOF goto S11
S4 if (n >= 0) goto S7
S5 return (error)
S6 goto S9
S7 nums[count] = n
S8 count ++
S9 fread(fptr, n)
S10 goto S3
S11 avg = mean(nums,count)
S12 return(avg)

CFG with Maximal Basic Blocks

S1

S2

S3

S4

S5 S6

S7

S8

S9

S10

entry

exit

F

T

F

T

Procedure AVG

S1 count = 0
S2 fread(fptr, n)
S3 while (not EOF) do
S4 if (n < 0)
S5 return (error)

else
S6 nums[count] = n
S7 count ++

endif
S8 fread(fptr, n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

Wrong!

CFG with Maximal Basic Blocks

S1,2

S3

S4

S5
S6,7,8

S9,10

entry

exit

F

T

F

T

Procedure AVG

S1 count = 0
S2 fread(fptr, n)
S3 while (not EOF) do
S4 if (n < 0)
S5 return (error)

else
S6 nums[count] = n
S7 count ++

endif
S8 fread(fptr, n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

What about data flow?

We can do the same thing as with control flow

Uses of Data-Flow Analyses
• Compiler Optimization
• E.g., !"#$%&#%'()"(&*&%+"#

suppose every assignment to c that reaches this statement assigns 5

then a can be replaced by 15

a=c+10

➡ need to know reaching definitions: which definitions of
variable c reach a statement

1/24/18

6

Uses of Data-Flow Analyses
• Software Engineering Tasks
• E.g., Debugging

suppose that a has the incorrect value in the statement

a=c+y

! need data dependence information: statements that can
affect the incorrect value at a given program point

!"#"$%&#'#()*$*&*+,,#-)

! .#'+#(&/-&#+"/,#"$%
" 01-)&2$331-1'"

" ,#'+#(&-1,/01*&4+5*

! 6'#()71&"81&*/+-%1&%/21&"/&21"1-,$'1
" %/'"-/(&3(/9

" 2#"#&3(/9

! :+$(2&-1#%8#4$($")&5-#;8*<&2#"#&21;1'21'%1&
5-#;8*<&1"%=&&

Dynamic analysis

• Assertions

• Detecting invariants

Assertions
public double area(int length, int width) {
assert(length >=0);

assert(width >=0);
return length * width;

}

Detecting invariants
public int square(int x) {

return x * x;
}

Let’s run the code and watch it. What can we tell about it?

Why dynamic detection?

• Is it sound?
– If you learn a property about a program, must it

be true?
• Is it complete?
– Do you learn all properties that are true about a

program?

1/24/18

7

So why dynamic detection?
• Code can be complex
– Static analysis may not scale to large programs.

• Sometimes, logs is all you have access to
– Not all code is open source. If you use libraries,

others’ code, you may only be able to observe
executions.

• Fast
• Detects properties of actual usage, rather than

all possible usage

What can we do with static and
dynamic analyses?

! You have:
" a program
" some tests that pass
" some tests that fail

What can we do with static and
dynamic analyses?

• You have:
– a program
– some tests that pass
– some tests that fail

What can we do statically?

Statically, we can…

• Think about the code long and hard, and fix it.
• Can we step through a failing test case?

See where the code goes wrong?
– but to automate this, we have to know where the

code is “supposed” to go

• Can we reverse-engineer the conditions
necessary to get to the desired result?

What can we do with static and
dynamic analyses?

• You have:
– a program
– some tests that pass
– some tests that fail

What can we do dynamically?

!"#$%&'$((")*+,*'$#-

! ./#*01,*'23,*$#3*245,67,*
+1&'1*(&#,5*,8,'/0,*+1,#
" (&#,5*01$0*,8,'/0,*2#*9$&(&#:5*0,505*2#("*$6,*%26,*

(&;,("*4/::"

! <,*'$#*3,0,'0*'23,*$6&$#05*$#3*6,$52#*
$42/0*01,*'23,

! <,*'$#*%/';*+&01*01,*'23,*$#3*5,,*&9*&0*32,5*
$#"*4,00,6*2#*01,*0,505

