
CS 621
Homework 4

Dynamic Race Detection

Due: Tuesday, April 24, 2018, 9:00 AM EDT via Moodle. You may work with others on this assignment
but each student must submit his or her own write up, clearly specifying the collaborators. The write ups
should be individual, not created jointly, and written in the student’s own words. Late assignments will not be
accepted without prior permission.

Overview

The goal of this assignment is to learn to use a dynamic race detection tool. This assignment requires you
to go a bit beyond what you’ve learned in lecture, and read up on writing multi-threaded programs in
Java, what races are, and how to avoid them.

The assignment consists of:

1. Using a dynamic race detection tool called CHECKSYNC.

2. Answering problem questions about dynamic race detection.

Resources

Download http://people.cs.umass.edu/˜brun/class/2018Spring/CS621/hw4/hw4.zip with:

• The Java executable (checkSync.jar file) for CHECKSYNC, a dynamic race detection tool.

• The Java source code (.java files) and executable (.class files) for multi-threaded programs POOL

and Harness, on which we will run CHECKSYNC.

At the end of this document, there is a section that explains how to interpret CHECKSYNC output. You
should find this resource very useful.

Setup

POOL is a generic object-pooling library that may be used by a client program to optimize the usage of
resources like sockets and database connections. The library, whose source code is provided to you, con-
sists of class SleepingObjectFactory that implements an object factory, and class GenericObjectPool
that uses the object factory to implement an object pool (denoted by the interface ObjectPool). Class
GenericObjectPool extends class BaseObjectPool and implements interface ObjectPool.

A client program that uses POOL to manage its resources may call the methods declared in interface
ObjectPool. For instance, methods .borrowObject and .returnObject enable borrowing objects from
the pool and returning them back, respectively, while the .close method instructs the pool to close and clean
up. The ObjectPool interface provides many other methods, but we will focus on just these three methods
in this assignment.

The class Harness, whose source code is also provided to you, tests the implementation of the .borrow-
Object, .returnObject, and .close methods in Pool. Specifically, it simulates a multi-threaded client

CS 621 Spring 2018. Homework 4. Dynamic race detection Page 1 of 3

https://moodle.umass.edu/course/view.php?id=44782
http://people.cs.umass.edu/~brun/class/2018Spring/CS621/hw4/hw4.zip


program that first constructs a pool, then spawns a bunch of threads that simultaneously and repeatedly invoke
the .borrowObject and .returnObject methods on that pool and, finally, when all these threads are done,
closes the pool by calling the .close method. We wish to determine if the pool can be corrupted by this
multi-threaded client program.

CHECKSYNC is a dynamic race detection tool based on the Eraser algorithm. If you are interested, you
may read more about Eraser here: http://dl.acm.org/citation.cfm?id=265927

CHECKSYNC takes as input a Java program and produces the file sync.log that reports potential races
the tool found in the program. For instance, to run the tool on the above test case, you need to execute the
following:

java -cp ./checkSync.jar:. edu.umd.cs.pugh.CheckSync Harness

• Note that the .jar is compiled using Java 6 (v1.6). If you use Java 7 (v1.7) or later, the binaries should
execute just fine. You should not run into any compatibility problems, since you are not compiling the
code, but if you do, the -source 6 and -target 6 arguments to java may prove useful.

• Note that the : separator in the -classpath argument is specific to Linux-based operating systems
and that Windows uses ;

Problems

1. Write a small test case RaceFreeTest.java containing a multi-threaded Java program that is race-free
but for which the Eraser algorithm, and hence the CheckSync tool, reports a single false race between
a pair of accesses (at least one of which is a write, of course).

For a quick tutorial on how to write multithreaded programs in Java, see http://www.tutorialspoint.
com/java/java_multithreading.htm and you may find the Harness sample multi-threaded pro-
gram useful.

(a) Submit RaceFreeTest.java

(b) In a separate writeup.txt or writeup.pdf, cut and paste the generated sync.log (it must
contain a single false race) along with a short explanation why you think the false race was
reported.

2. Run CHECKSYNC on the Harness test case for the POOL library as described above. Submit the
generated sync.log and answer the following two problems in the same writeup.txt from above.

(a) For each reported race in sync.log, state whether it is a real race or a false race, along with
a short explanation why you think it is real or false. You will need to inspect the stack trace
generated for each reported race in sync.log and the sources of the Harness test case and the
POOL library. You may group your answers for similar races together instead of describing each
race separately. Be careful: A reported race may seem real when in fact it is false!

(b) For each reported race that is real (as opposed to false), suggest a fix in the POOL library that
eliminates it.

Deliverables

You should submit a single .zip file containing 3 files:

• RaceFreeTest.java from problem 1(a).

CS 621 Spring 2018. Homework 4. Dynamic race detection Page 2 of 3

http://dl.acm.org/citation.cfm?id=265927
http://www.tutorialspoint.com/java/java_multithreading.htm
http://www.tutorialspoint.com/java/java_multithreading.htm


• writeup.txt or writeup.pdf from problems 1(b), 2(a), and 2(b).

• sync.log from problem 2.

Interpreting CHECKSYNC output

CHECKSYNC will write the results of tracing the synchronization in a file sync.log. Here is an example of
a possible error:

Possibly broken synchronization on Elevator.myFloor
Previously accessed in Elevator.currentFloor in thread Elevator 0
with the following locks held: Elevator

current access in thread Elevator 0:
Elevator.serviceFloor(Elevator.java:108)
Elevator.lessDumbAlgorithm(Elevator.java:172)
Elevator.run(Elevator.java:236)

with no locks held

This states that the variable Elevator.myFloor could have been accessed by different threads not
holding a common lock. In this case, it points out that the last time the variable Elevator.myFloor was
accessed, in method Elevator.currentFloor, a lock named Elevator was held. The current access, which
occurred in the method Elevator.serviceFloor (with a stack trace showing how this was executed), had
no locks held.

To use this tool well, you will probably want to give your threads meaningful names. You can do
this by using the constructor Thread(String name); in the case you are extending Thread, just include
super(myname) as the first line of your constructor.

CS 621 Spring 2018. Homework 4. Dynamic race detection Page 3 of 3


