Coming up

* Final projects:
— final project presentations: Tue Dec 11, in CS 150
— final submission due: Tue Dec 11, 11:55 PM

12/6/18

Project Final Presentations

¢ December 11, 10AM-11:15AM

e CS 150 (in the CS building)

* Think of this as a science fair.

* Each team will get an easel and poster board.

* Bring a poster or printed slides. 24” X 36" is ideal
size. And laptop for demo.

* Describe and discuss the solution, and
demo the implementation.

* Will see (at least) 2 separate judges.

¢ Chance to see other projects too!

Today’s plan

* Evaluations
* Power of computing

Class standing

without exams,
it’s a little hard to know how you’re doing

Evaluations

* We'll take 15 minutes to do evaluations

* They are anonymous and | don’t see them until
(long) after the grades are posted

* | actually use them to improve my teaching

* UMass uses them to decide if | am a good
teacher and whether to let me keep teaching

What do | care about?

* What did you like about the course?
* What could be improved?

* Did you learn from in-class exercises?
* Did you learn from homework?

* Who wants more in-class exercises?
* Who wants more homework?

* Did you like not having tests?

* Do you like the project?

Evaluations

http://owl.oit.umass.edu/partners/courseEvalSurvey/uma/

* If we get 80% participation by tomorrow:
— Everyone gets 0.5 points of extra credit.

— Everyone gets a chance to submit an optional
extra credit assignment.

12/6/18

Power of Software

Can you write any program |
‘describe to you?

Can you write:

A program HALTS?
INPUT: the source code of a method
OUTPUT: false if the method enters an infinite loop,

What’s HALTS?(method)?

method () {
print “hello world”;

What’s HALTS?(method)?

method () {
for (int x=0; x<5; x++)
print “hello world”;

What’s HALTS?(method)?

method () {
for (int x=0; x<-1; x++)
print “hello world”;

http://owl.oit.umass.edu/partners/courseEvalSurvey/uma/

What’s HALTS?(method)?

method () {
while (true);

12/6/18

What’s HALTS?(method)?

method () {
int x = 785t digit of T
if (x == 7)
while(true);

What’s HALTS?(method)?

method () {
int x = 785t digit of mm;
int y = x™"X™""x"x+1;
int z = yth digit of m;
if (z == 0)
while(true);

What’s HALTS?(method)?

method () {
int x = 785t digit of T
int y = x™X™X"x"x+1;
int[] z[] = the y®™ through (x+y)th
digits of T,
if (z ever repeats in Tragain)
while(true);

How about the general case?

* Let’s count programs. How many programs
are there?

Specifications

* And how many specification are there?
— let’s limit ourselves to simple specifications:
« given a set of numbers, e.g., {2, 4, 6}
* oninputi, return 1if i is in the set, and 0 otherwise

12/6/18

First 64 programs

* How many of our specifications can | solve
with 64 programs?
(a) 64
(b) 32
(c) 8
(d)6
(e) 2

set size -> number of specs

* Suppose | can only write 4 programs.
* | start with the smallest set specification:
{}
* that’s 1 program. (return false on all inputs)
* With 4 programs, | can do

{1 {1}, {2}, {1, 2}

First 64 programs

* With 64 programs, how large can my

specification sets get (if | am being compact)
(a) 64
(b) 32
(c) 8
(d)6
(e) 2

{}, {1}, {2}, {3}, {4}, {5}, {6},

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}...

{1,2,3},{1,3,4}, ..., {1,2,3,4}, ..., {1,2,3,4,5}

Scalability Problem

* To cover subsets of a set of n numbers, | need
2" programs.

* But | only have as many programs are there
are natural numbers.

* That’s exponentially smaller than the number
of specifications there are.

Can’t do it for all subsets!

Can HALTS? exist?

* Imagine that you wrote HALTS?

* | will write a new program NALTS?:

NALTS? (Method p) {
if (HALTS? (p)==false) return 1;
else while (true);

Key: run the program on itself
What is the value of
NALTS? (NALTS?)

What is the value of
NALTS? (NALTS?)

* Two cases:

1. If NALTS?(NALTS?) goes into an infinite loop,
then
HALTS?(NALTS?)==true, which means that
NALTS? terminates.

So case 1 is impossible.

2. If NALTS?(NALTS?) does not go into an infinite
loop, then HALTS?(NALTS?)==false, which means
that NALTS? does not terminate.

So case 2 is impossible.

Conclusion

* The program HALTS cannot exist!
* Many programs cannot exist!

* Learn more in CS 401 or CS 601

12/6/18

Zero-Knowledge Proofs

How can | prove to you |
know X without telling you
‘anything about X?

