Welcome back

11/27/18

In-Class Exercise: Reasoning About Mutants

* Today we’ll learn how to use Z3,
a formal theorem prover

* And we’ll use it to help us create tests

Z3

d Online interface: https://rise4fun.com/Z3

d Tutorial: https://rise4fun.com/Z3/tutorial/guide

* In-class assignment:
https://neonle.cs.umass.edu/“brun/cIass/2018FaII/CSSZO/in—cIassAEdf

Z3’s language

* Z3 uses a a kind of programming language
e Can declare variables and functions,

define constraints, print things to the screen,
etc.

Z3’s language

(echo “starting 73...")
(declare-const a Int)
(declare-fun f (Int Bool) Int)
(assert (> a 10))

(assert (< (f a true) 108))
(check-sat)

ovAwN R

This code prints “starting Z3...” to the screen,
declares a constant a

declares a function Int f (Int Bool)
makes 2 assertions: a > 10 and f(a, true) < 100
asks “is this possible?”

Encoding programs in constraints

Given a program P and a question about P,
encode them into constraints and
ask Z3 to answer the question!

int P(int a, int b){

P: return a + b;

}

Question: Can P ever return 0?

1 (declare-const a Int)

2 (declare-const b Int)

3 (assert (= (+ a b) @)) ; We want a + b to be 0

4 (check-sat) ; Find out if this is satisfiable

5 (get-model) ; It is, so let's get a satisfying modell

https://rise4fun.com/Z3
https://rise4fun.com/Z3/tutorial/guide
https://people.cs.umass.edu/~brun/class/2018Fall/CS520/in-class4.pdf

11/27/18

Modeling Control Flow Modeling Control Flow
lint doesStuff (int a, int b, int c¢){ lint doesStuff (int a, int b, int c¢){
if (¢ ==) return 0; if (c ==) return 0;
if (c == 4) return 0; if (¢ == 4) return 0;
if (a + b < ¢) return 1; if (a + b < ¢) return 1;
if (a + b > ¢) return 2; if (a + b > ¢) return 2;
if (a * b == c) return 3; // Does this ever happen?? if (a * b == c) return 3; // Does this ever happen??
return 4; return 4;
} } 1 (define-sort JInt () (_ Bitvec 32))
. 2 (declare-const a JInt)
To ask if doesStuff ever returns 3, encode: 3 (declare-const b JInt)
4 (declare-const ¢ JInt)
—_— —_— 5
!(C - O) I(C - 4) I(a + b < C) 6 (assert (not (= c #x00000000)))
7 (assert (not (= c #x00000004)))
!(a +b> C) (a*b==c) 8 (assert (not (bvslt (bvadd a b) €)))
9 (assert (not (bvsgt (bvadd a b) c)))
0 (assert (= (bvmul a b) ©))
1
2 (check-sat)
3 (get-model)|

We have to frame the question in terms of
“Does there exist an input such that...”

Z3 for Mutation Testing

int normal_sum(int a, int b) { i . i
return a + b; * If two functions are identical, then for all

} inputs, they act the same.

, , , * We can ask if two functions are NOT identical.

int mutant_sum(int a, int b){
return a * Db;

} “Does there exist an input for which they

differ?”

1 (declare-const a Int) 1 (declare-const a Int)

2 (declare-const b Int) 2 (declare-const b Int)

3 (assert (= (+ a b) (* a b)) 3 (assert (not (= (+ a b) (* a b))))
4 (check-sat) 4 (check-sat)

5 (get-model) 5 (get-model)

Now, you drive!

* In-class assignment:
https://neonle.cs.umass.edu/“brun/cIass/ZOlSFaII/CSSZO/in—cIassAEdf

d Online Z3 interface: https://rise4fun.com/Z3

d Tutorial: https://rise4fun.com/Z3/tutorial/guide

https://people.cs.umass.edu/~brun/class/2018Fall/CS520/in-class4.pdf
https://rise4fun.com/Z3
https://rise4fun.com/Z3/tutorial/guide

