
10/11/18

1

CS 520
Theory and Practice of Software Engineering

Fall 2018

Software testing

October 11, 2018

Today

Introduction to software testing

● Blackbox vs. whitebox testing
● Unit testing (vs. integration vs. system testing)
● Test adequacy

○ Structural code coverage
■ Statement coverage
■ Decision coverage
■ Condition coverage

○ Mutation analysis

Software testing

What can testing do, and what can’t it do?

Software testing can show the presence of defects,
but never show their absence! (Edsger W. Dijkstra)

● A good test is one that fails because of a defect.

How do we come up with good tests?

Two strategies: black box vs. white box

Black box testing
● The system is a black box (can’t see inside).
● No knowledge about the internals of a system.
● Create tests solely based on the specification (e.g.,

input/output behavior).

White box testing
● Knowledge about the internals of a system.
● Create tests based on these internals (e.g., exercise a

particular part or path of the system).

Unit testing, integration testing, system testing

Unit testing
● Does each unit work as specified?

Integration testing
● Do the units work when put together?

System testing
● Does the system work as a whole?

Our focus: unit testing

Unit testing

● A unit is the smallest testable part of the software system.

● Goal: Verify that each software unit performs as specified.
● Focus:

○ Individual units (not the interactions between units).

○ Usually input/output relationships.

10/11/18

2

Software testing

Software testing can show the presence of defects,
but never show their absence! (Edsger W. Dijkstra)

● A good test is one that fails because of a defect.

When should we stop testing if no (new) test fails?

Test effectiveness

Ratio of detected defects is the best effectiveness metric!

Problem
● The set of defects is unknowable

Solution
● Use a proxy metric, for example code coverage

Structural code coverage: live example

public double avgAbs(double ... numbers) {
// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == 0) {

throw new IllegalArgumentException("Array numbers must not be null or
empty!");

}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {

double d = numbers[i];
if (d < 0) {

sum -= d;
} else {

sum += d;
}

}

return sum/numbers.length;
}

Average of the absolute values of an array of doubles

Control Flow Graph (CFG)

Entry

point

a==null ||

a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal

exit

Exceptional
exit

throw new IllegalArgumentException(
“Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += num
false

true

sum -= num

++i

num = a[i]

Statement coverage

● Every statement in the program must be
executed at least once

● Given the control-flow graph (CFG), this is
equivalent to node coverage

Structural code coverage: live example

public double avgAbs(double ... numbers) {
// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == 0) {

throw new IllegalArgumentException("Array numbers must not be null or
empty!");

}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {

double d = numbers[i];
if (d < 0) {

sum -= d;
} else {

sum += d;
}

}

return sum/numbers.length;
}

Average of the absolute values of an array of doubles

10/11/18

3

Structural code coverage: statement coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
“Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += num
false

true

sum -= num

++i

num = a[i]

Condition coverage vs. decision coverage

Terminology
● Condition: a boolean expression that cannot be decomposed into

simpler boolean expressions.

● Decision: a boolean expression that is composed of conditions, using
0 or more logical connectors (a decision with 0 logical connectors is a
condition).

● Example: if (a && b) { … }
■ a and b are conditions.
■ The boolean expression a && b is a decision.

Decision coverage (a.k.a. branch coverage)

● Every decision in the program must take on
all possible outcomes (true/false) at least once

● Given the CFG, this is equivalent to edge coverage
● Example: if (a>0 && b>0)

○ a=1, b=1
○ a=0, b=0

Structural code coverage: live example

public double avgAbs(double ... numbers) {
// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == 0) {

throw new IllegalArgumentException("Array numbers must not be null or
empty!");

}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {

double d = numbers[i];
if (d < 0) {

sum -= d;
} else {

sum += d;
}

}

return sum/numbers.length;
}

Average of the absolute values of an array of doubles

Structural code coverage: decision coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
“Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += num
false

true

sum -= num

++i

num = a[i]

Condition coverage

● Every condition in the program must take on
all possible outcomes (true/false) at least once

● Example: (a>0 && b>0)
○ a=1, b=0
○ a=0, b=1

10/11/18

4

Structural code coverage: live example

public double avgAbs(double ... numbers) {
// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == 0) {

throw new IllegalArgumentException("Array numbers must not be null or
empty!");

}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {

double d = numbers[i];
if (d < 0) {

sum -= d;
} else {

sum += d;
}

}

return sum/numbers.length;
}

Average of the absolute values of an array of doubles

Structural code coverage: condition coverage

Entry

point

a==null ||

a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal

exit

Exceptional
exit

throw new IllegalArgumentException(
“Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += num
false

true

sum -= num

++i

num = a[i]

Structural code coverage: subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

● Subsumption relationships:
○ Does decision coverage subsume statement coverage?

○ Does decision coverage subsume condition coverage?

○ Does condition coverage subsume decision coverage?

Decision coverage vs. condition coverage

4 possible tests for the decision a || b:
1. a = 0, b = 0
2. a = 0, b = 1
3. a = 1, b = 0
4. a = 1, b = 1

Neither coverage criterion subsumes the other!

a b a || b
0 0 0

0 1 1

1 0 1

1 1 1

a b a || b
0 0 0

0 1 1

1 0 1

1 1 1
Satisfies condition coverage

but not decision coverage
Does not satisfy condition

coverage but decision coverage

Structural code coverage: subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

● Subsumption relationships:
○ Decision coverage subsumes statement coverage

○ Decision coverage does not subsume condition coverage

○ Condition coverage does not subsume decision coverage

Code coverage: advantages

● Code coverage is easy to compute.
● Code coverage has an intuitive interpretation.

But, does coverage ensure effective testing?

10/11/18

5

Are there any alternatives?

Code coverage: drawbacks

● Code coverage does not require test assertions.
● Not all statements etc. are equally important.
● Coverage is not the same as behavior.

Mutation analysis: overview

Mutation analysis: overview Mutation analysis: overview

Mutation analysis: overview Mutation analysis: overview

10/11/18

6

Mutation analysis: overview Mutation analysis: overview

Assumption: Mutant detection rate is a good proxy for fault detection rate.

What does it mean for a test to fail on a mutant program?

Mutation analysis: example

Find a test case that detects the following mutant
(i.e., passes on the original program but fails on the mutant)

Original program:
public int min(int a, int b) {

return a < b ? a : b;
}

Mutant:
public int min(int a, int b) {

return a;
}

a b Original Mutant
1 2 1 1

1 1 1 1

2 1 1 2

Mutation analysis: another example

Find a test case that detects the following mutant (i.e.,
passes on the original program but fails on the mutant)

Original program:
public int min(int a, int b) {

return a < b ? a : b;
}

Mutant:
public int min(int a, int b) {

return a <= b ? a : b;
}

There is no such test that
can detect the mutant...

The mutant is undetectable
because it is equivalent to
the original program!

Summary

● Testing is an important way to measure code quality
● Black-box testing
● White-box testing
● Coverage metrics

○ Statement

○ Condition

○ Decision

● Mutation-based metric

For more, read:
“Are mutants a valid substitute for real faults in software testing?” in FSE 2014

