CS 520

Theory and Practice of Software Engineering
Fall 2018

Object Oriented Design Patterns

September 25, 2018

9/24/18

Today

e Recap: Object oriented design principles
e Design problems & potential solutions
e Design patterns:

o What is a design pattern?

o Categories of design patterns
o Structural design patterns

Recap

Object oriented design principles

e Information hiding (and encapsulation)

e Open/closed principle

e Liskov substitution principle

e Composition/aggregation over inheritance

A first design problem

Weather station revisited
Current 30 day history

P =
39°C min; 20° F
' max: 35° F Temp. sensor

Reset history
button

Model View Controler: example

Simple weather station
Current 30 day history

25°F Q<:

39°C min: 20° F
’ max:; 35° F Temp. sensor

View

Reset history
button

Controler

What’s a good design for the view?)
Ae
sees Ses L

D '

o Temp.
S :ﬁ;ﬁ}J
i ano Reset history
o min: 20° F
-39°C max: 35° F button

updates 09/01,12° AApulates
09/02,14°

Weather station: view

<<interface>> ('I..n
View

+draw(d:

Data)

SimpleView || GraphView ...View ComplexView
+draw(d:Data) +draw(d:Data) +draw(d:Data) -views:List<View>
+draw(d:Data)
+addView(v:View)
25°F How do we need to

'

-3.9°C

min: 20° F
max: 35° F

implement
draw(d:Data)?

9/24/18

Weather station: view

<<interface>> ('I..n
View
+draw(d:Data)

SimpleView || GraphView ComplexView

+draw(d:Data) +draw(d:Data) -views:List<View>

+draw(d:Data)

+draw(d:Data)
+addView(v:View)

o public void draw(Data d) {

25°F Q<; for (View v : views) {
v.draw(d);

o min: 20° F

S9C | max 35 F)

Design pattern: Composite

<<interface>>
Component

+operation()

{..n

Design pattern: Composite

<<interface>> {..n
Component
Foperation() Iterate over all composed
components (comps), call
operation() on each, and
potentially aggregate the
results.
I -
1 1 ! Q
CompA CompB CJny{osite
+operation() +operation() -comps:Col‘#tiomcamponenb
+operat ior«)
+addComp (c:Component)

+removeComp (c:Component)

e Provides a com

mon terminology.

1 | !
CompA CompB Composite
+operation() +operation() -comps: Collection<Component>
+operation()
+addComp (c:Component)
+removeComp (c:Component)
What is a design pattern?

e Addresses a recurring, common design problem.
e Provides a generalizable solution.

What is a design pattern?

e Addresses a recurring, common design problem.
e Provides a generalizable solution.
e Provides a common terminology.

Pros

e |Improves communication and documentation.
e “Toolbox” for novice developers.

Cons

e Risk of over-engineering.
e Potential impact on system performance.

More than just a name for common sense and best practices.

9/24/18

Design patterns: categories

1. Structural
O Composite
O Decorator
o ..
2. Behavioral
O Template method
O Visitor
o ..
3. Creational
O Singleton
O Factory (method)
¢}

Another design problem: I/O streams

InputStream is = <<interface>>
new FileInputStream(...); InputStream
. +read():int
int b; +read(buf:byte[]):int
while((b=is.read()) != -1) {
// do something 1

FilelnputStream

+read():int
+read(buf:byte[]):int

Another design problem: I/O streams

InputStream is = <<interface>>
new FileInputStream(...); InputStream
. +read():int
int b; +read(buf:byte[]):int
while((b=is.read()) != -1) {
// do something 1

FilelnputStream
+read() :int
+read(buf:byte[]):int

Another design problem: /O streams

InputStream is = <<interface>>
new FileInputStream(...); |nputStream
. +read():int
int b; +read(buf:byte[]):int
while((b=is.read()) != -1) {
// do something 1

Problem: filesystem I/O is expensive

FilelnputStream

+read() :int Solution: use a buffer!
+read(buf:byte[]):int

Why not simply implement the

buffering in the client or subclass?

Problem: filesystem I/O is expensive

Another design problem: I/O streams

InputStream is = <<interface>>
new BufferedInputStream(InputStream
new FileInputStream(...)); Tread():int

1n1.: b; . +read(buf:byte[]):int

while((b=is.read()) != -1) {

// do something ? 1
1
1 1

FilelnputStream BufferedinputStream

+read():int -buffer:byte[]

+read(buf:byte[]):int

+read() :int
still returns one byte (int) at a time, but from its +read(buf:byte[]):int
buffer, which is filled by calling read(buf:byte[]).

+BufferedInputStream(is:InputStream)

Design pattern: Decorator

<<interface>>

Component
+operation()

CompA CompB Decorator

+operation() +operation() -decorated: Component

+operation()

+Decorator(d:Component)

Composite vs. Decorator

<<interface>>
Component
+operation()

Composite CompA Decorator
-compsSéllection(ComponenE}: +operation() -decorated @ponent
+operation() +Decorator(d:Component)
+addComp(c:Component) +operation()
+removeComp(c: Cmﬂ)onent)

Find the median in an array of doubles

)
Examples: 7/ e
e median([1, 2, 3, 4, 5]) = ??? ‘t/

e median([1, 2, 3,4]) =777

9/24/18

Recap: Composite vs. Decorator

<<interface>>
Component
+operation()

Composite CompA Decorator
-compsgéllectiondompnnen?_a +operation() -decorated @pnne@
+operation() +Decorator(d:Component)
+addComp (c:Component) +operation()
+removeComp (c:Component)

Find the median in an array of doubles

Examples:

e median([1, 2, 3,4, 5])=3

e median([1,2,3,4]) =25
Algorithm
Input: array of length n Output: median

Find the median in an array of doubles

Examples:
e median([1, 2, 3,4,5])=3
e median([1,2,3,4]) =25

Algorithm

Input: array of lengthn Output: median

1. Sort array

2. if nis odd return ((n+1)/2)th element
otherwise return arithmetic mean of
(n/2)th element and ((n/2)+1)t element

. . . . Y
Median computation: naive solution [

public static void main(string ... args) {
System.out.println(median(1,2,3,4,5));

}

public static double median(double ... numbers) {

int n = numbers.length; |
i ”(°°1“" ;;5(‘79“ = true; What's wrong with this design?
while(swappe) .
swapped = false; How can we improve it?
for (int i = 1; i<n; ++i) {

if (numbers[i-1] > numbers[i]) {
swapped = true;
}

}
if (n%2 == @) {
return (numbers[(n/2) - 1] + numbers[n/2]) / 2

} else {
return numbers[n/2];
}

Ways to improve

1: Monolithic version, static context.

2: Extracted sorting method, non-static context.

3: Proper package structure and visibility, extracted main method.
4: Proper testing infrastructure and build system.

o o o o

9/24/18

One possible solution: template method pattern

AbstractMedian
{abstract}

+ median(a:double[]):double

sort(a:double[] ymmm——i—
(& j Italics indicate an abstract method.

SimpleMedian

sort(a:double[])

One possible solution: template method pattern

AbstractMedian

{abstract}
+ median(a:double[]):double | o The template method (median)
sort(a:double[]) implements the algorithm but leaves
the sorting of the array undefined.

e The concrete subclass only needs

SimpleMedian to implement the actual sorting.

sort(a:double[])

One possible solution: template method pattern

AbstractMedian
{abstract}

Should the median method be final?

+ median(a:double[]):double | o The template method (median)
sort(a:double[]) implements the algorithm but leaves

the sorting of the array undefined.

SimpleMedian e The concrete subclass only needs

to implement the actual sorting.
sort(a:double[])

Another solution: strategy pattern

<<interface>> <<interface>>
Median Sorter

+median(a:double[]):double +sort(array:double[])

t t

StrategyMedian K - _l_ -

-sortStrategy:Sorter

HeapSort QuickSort

+median(a:double[]):double +sort(...)

+setSorter(s:Sorter)

+sort(...)

“median” delegates the sorting of the array to a “sortStrategy”

Template method pattern vs. strategy pattern

Two solutions to the same problem

2

What are the differences, pros, and cons?

Template method pattern vs. strategy pattern
Two solutions to the same problem

Template method
e Behavior selected at compile time.
e Template method is usually final.

Strategy
e Behavior selected at runtime.
e Composition/aggregation over inheritance.

9/24/18

Model-View-Controller revisited

Design patterns in a MVC architecture

Client >

sees, uses
y 4
View Controller
update: anipulates
Model

Model-View-Controller revisited

Design patterns in a MVC architecture

Client >

Composite sees, ses Strategy
l - S |
N =
View Controller
updat nipulates
Model

Model-View-Controller revisited

Design patterns in a MVC architecture

Client >

Observer pattern

Observer pattern

From Wikipodia, the ree encyciopedia

Tho observer pattern is a software design pattern in which an object, called the subject, maintains a lst of

any state changes, usually by caling one of their methods.

e Problem solved:

o A one-to-many dependency between objects should be defined
without making the objects tightly coupled.

o When one object changes state,
an open-ended number of dependent objects are updated automatically.

o One object can notify an open-ended number of other objects.

sees, uses
View Controller
update: anipulates
Model
—
7??
Observer pattern
Observable S N <<interface>>
{abstract} Observer
observers:Set<Observer> + update()
+ register(o:0Observer)
+ unregister(o:0Observer) A
+ stateChanged()
MyObservable MyObserver
- state:State
+ getState():State + update()

T

setState(state:State)

Observer pattern

Observable
{abstract}

#

observers:Set<Observer>

<<interface>>
Observer

+

register(o:0Observer)
unregister(o:0Observer)
stateChanged()

+ +

+ update()

t

MyObservable

MyObserver

state:State

+

getState():State
setState(state:State)

+

Variation: pass incremental changes or the state to update method.

+ update()

9/24/18

