
9/24/18

1

CS 520
Theory and Practice of Software Engineering

Fall 2018

Object Oriented Design Patterns

September 25, 2018

Today

● Recap: Object oriented design principles

● Design problems & potential solutions

● Design patterns:
○ What is a design pattern?
○ Categories of design patterns
○ Structural design patterns

Recap

Object oriented design principles
● Information hiding (and encapsulation)
● Open/closed principle
● Liskov substitution principle
● Composition/aggregation over inheritance

A first design problem

Weather station revisited

25° F

-3.9° C min: 20° F
max: 35° F

Current 30 day history

Temp. sensor

Reset

Reset history
button

Model View Controler: example

Simple weather station

25° F

-3.9° C min: 20° F
max: 35° F

Current 30 day history

Temp. sensor

Reset

Reset history
button

01/01 ->    0
01/02 -> - 5
01/03 -> -10
01/04 -> - 4
...

Model

Controler

View

What’s a good design for the view?

09/01,12°
09/02,14°
...

Client
sees uses

manipulatesupdates

25° F

-3.9° C min: 20° F
max: 35° F

Temp. 
sensorReset

Reset history
button



9/24/18

2

Weather station: view

ComplexView

<<interface>>
View

+draw(d:Data)

SimpleView GraphView
-views:List<View>
+draw(d:Data)
+addView(v:View)

1..n

...View
+draw(d:Data)

25° F

-3.9° C min: 20° F
max: 35° F

+draw(d:Data)+draw(d:Data)

How do we need to
implement 

draw(d:Data)?

Weather station: view

ComplexView

<<interface>>
View

+draw(d:Data)

SimpleView GraphView
-views:List<View>
+draw(d:Data)
+addView(v:View)

1..n

...View
+draw(d:Data)

public void draw(Data d) {
for (View v : views) {
v.draw(d);

}
}

25° F

-3.9° C min: 20° F
max: 35° F

+draw(d:Data)+draw(d:Data)

Design pattern: Composite

Composite

<<interface>>
Component

+operation()

CompA CompB
+operation() +operation() -comps:Collection<Component>

+operation()
+addComp(c:Component)
+removeComp(c:Component)

1..n

Design pattern: Composite

Composite

<<interface>>
Component

+operation()

CompA CompB
+operation() +operation() -comps:Collection<Component>

+operation()
+addComp(c:Component)
+removeComp(c:Component)

1..n

Iterate over all composed 
components (comps), call 
operation() on each, and 
potentially aggregate the 
results.

What is a design pattern?

● Addresses a recurring, common design problem.
● Provides a generalizable solution.
● Provides a common terminology.

What is a design pattern?

● Addresses a recurring, common design problem.
● Provides a generalizable solution.
● Provides a common terminology.

Pros
● Improves communication and documentation.
● “Toolbox” for novice developers.

Cons
● Risk of over-engineering.
● Potential impact on system performance.

More than just a name for common sense and best practices.



9/24/18

3

Design patterns: categories

1. Structural
○ Composite
○ Decorator
○ ...

2. Behavioral
○ Template method
○ Visitor
○ ...

3. Creational
○ Singleton
○ Factory (method)
○ ...

Another design problem: I/O streams

<<interface>>
InputStream

+read():int
+read(buf:byte[]):int

FileInputStream

...
InputStream is =

new FileInputStream(...);

int b;
while((b=is.read()) != -1) {

// do something
}
...

+read():int
+read(buf:byte[]):int

Another design problem: I/O streams

<<interface>>
InputStream

+read():int
+read(buf:byte[]):int

FileInputStream Problem: filesystem I/O is expensive

...
InputStream is =

new FileInputStream(...);

int b;
while((b=is.read()) != -1) {

// do something
}
...

+read():int
+read(buf:byte[]):int

Another design problem: I/O streams

<<interface>>
InputStream

+read():int
+read(buf:byte[]):int

FileInputStream
+read():int
+read(buf:byte[]):int

Problem: filesystem I/O is expensive
Solution: use a buffer!

Why not simply implement the 
buffering in the client or subclass?

...
InputStream is =

new FileInputStream(...);

int b;
while((b=is.read()) != -1) {

// do something
}
...

Another design problem: I/O streams

<<interface>>
InputStream

+read():int
+read(buf:byte[]):int

FileInputStream
+read():int
+read(buf:byte[]):int

BufferedInputStream
-buffer:byte[]

+BufferedInputStream(is:InputStream)
+read():int
+read(buf:byte[]):int

...
InputStream is =

new BufferedInputStream(
new FileInputStream(...));

int b;
while((b=is.read()) != -1) {

// do something
}
...

1

Still returns one byte (int) at a time, but from its 
buffer, which is filled by calling read(buf:byte[]).

Design pattern: Decorator

<<interface>>
Component

+operation()

CompA CompB
+operation() +operation()

1

Decorator
-decorated:Component
+Decorator(d:Component)
+operation()



9/24/18

4

Composite vs. Decorator

<<interface>>
Component

+operation()

CompA
+operation()

1

Composite
-comps:Collection<Component>
+operation()
+addComp(c:Component)
+removeComp(c:Component)

1..n

Decorator
-decorated:Component
+Decorator(d:Component)
+operation()

Recap: Composite vs. Decorator

<<interface>>
Component

+operation()

CompA
+operation()

1

Composite
-comps:Collection<Component>
+operation()
+addComp(c:Component)
+removeComp(c:Component)

1..n

Decorator
-decorated:Component
+Decorator(d:Component)
+operation()

Find the median in an array of doubles

Examples:
● median([1, 2, 3, 4, 5]) = ???
● median([1, 2, 3, 4])     = ???

Find the median in an array of doubles

Examples:
● median([1, 2, 3, 4, 5]) = 3
● median([1, 2, 3, 4])     = 2.5

Algorithm
Input: array of length n     Output: median

Find the median in an array of doubles

Examples:
● median([1, 2, 3, 4, 5]) = 3
● median([1, 2, 3, 4])     = 2.5

Algorithm
Input: array of length n     Output: median
1. Sort array
2. if n is odd return ((n+1)/2)th element

otherwise return arithmetic mean of 
(n/2)th element and ((n/2)+1)th element

public static void main(String ... args) {                                   

System.out.println(median(1,2,3,4,5));                                   

}        

public static double median(double ... numbers) {                            

int n = numbers.length;                                                  

boolean swapped = true;                                                  

while(swapped) {                                                         

swapped = false;                                                     

for (int i = 1; i<n; ++i) {                                          

if (numbers[i-1] > numbers[i]) {                                 

...

swapped = true;                                              

}                                                                

}                                                                    

}                                                                        

if (n%2 == 0) {                                                          

return (numbers[(n/2) - 1] + numbers[n/2]) / 2;

} else {                                                                 

return numbers[n/2];                                                

}                                                                        

}   

Median computation: naive solution

What’s wrong with this design?
How can we improve it?



9/24/18

5

Ways to improve

○ 1: Monolithic version, static context.
○ 2: Extracted sorting method, non-static context.
○ 3: Proper package structure and visibility, extracted main method.
○ 4: Proper testing infrastructure and build system.

One possible solution: template method pattern

AbstractMedian
{abstract}

+ median(a:double[]):double
# sort(a:double[])

SimpleMedian
# sort(a:double[])

Italics indicate an abstract method.

One possible solution: template method pattern

AbstractMedian
{abstract}

+ median(a:double[]):double
# sort(a:double[])

SimpleMedian
# sort(a:double[])

● The template method (median)
implements the algorithm but leaves 
the sorting of the array undefined.

● The concrete subclass only needs 
to implement the actual sorting.

One possible solution: template method pattern

AbstractMedian
{abstract}

+ median(a:double[]):double
# sort(a:double[])

SimpleMedian
# sort(a:double[])

● The template method (median)
implements the algorithm but leaves 
the sorting of the array undefined.

● The concrete subclass only needs 
to implement the actual sorting.

Should the median method be final?

<<interface>>
Sorter

+sort(array:double[])

1

+median(a:double[]):double

<<interface>>
Median

StrategyMedian
-sortStrategy:Sorter HeapSort

+sort(...)

QuickSort
+sort(...)

...

“median” delegates the sorting of the array to a “sortStrategy”

+median(a:double[]):double
+setSorter(s:Sorter)

Another solution: strategy pattern Template method pattern vs. strategy pattern

Two solutions to the same problem

What are the differences, pros, and cons?



9/24/18

6

Template method pattern vs. strategy pattern

Two solutions to the same problem

Template method
● Behavior selected at compile time.
● Template method is usually final.

Strategy
● Behavior selected at runtime.
● Composition/aggregation over inheritance.

Model-View-Controller revisited

Design patterns in a MVC architecture

View Controller

Model

Client
sees uses

manipulatesupdates

Model-View-Controller revisited

Design patterns in a MVC architecture

View Controller

Model

Client
sees uses

manipulatesupdates

Composite Strategy

Model-View-Controller revisited

Design patterns in a MVC architecture

View Controller

Model

Client
sees uses

manipulatesupdates

???

Observer pattern

● Problem solved:

○ A one-to-many dependency between objects should be defined 
without making the objects tightly coupled.

○ When one object changes state, 
an open-ended number of dependent objects are updated automatically.

○ One object can notify an open-ended number of other objects.

Observer pattern

<<interface>>
Observer

+ update()

Observable
{abstract}

# observers:Set<Observer>

+ register(o:Observer)
+ unregister(o:Observer)
+ stateChanged()

MyObservable

+ getState():State
+ setState(state:State)

- state:State

MyObserver

+ update()



9/24/18

7

Observer pattern

<<interface>>
Observer

+ update()

Observable
{abstract}

# observers:Set<Observer>

+ register(o:Observer)
+ unregister(o:Observer)
+ stateChanged()

MyObservable

+ getState():State
+ setState(state:State)

- state:State

MyObserver

+ update()

Variation: pass incremental changes or the state to update method.


