
9/17/18

1

CS 520
Theory and Practice of Software

Engineering
Fall 2018

Version Control

September 18, 2018

Working in Teams

Thursday (September 20)
● First in-class exercise
● On using git (today is a prelude with useful info)
● Form 4-person teams

○ Use moodle to self-select a team; can do it before Thursday or on Thursday
● At least one person per team needs to bring a laptop

BRING A LAPTOP!

Our Goal
● Learn about different kinds of VCS
● Overview the basics of git
● Touch some intermediate git topics
● Clear up common points of confusion

○ Branch vs. Fork?
○ Merge vs. Pull Request?
○ Pull vs. Fetch?
○ Fork vs. Clone?

What Is VCS?

What are Version Control Systems
A Version Control System (VCS) records changes to a file set over time, making it
easy to review or revert to specific versions later

9/17/18

2

Why Use VCS?

Why Use Version Control?

Why Use Version Control?

● Easy to revert to previous versions

● Work on multiple features in parallel

● Makes collaboration easier

● Narrate the evolution of codebase with messages

● Nice tools such as GitHub (and GitLab (and BitBucket...)) with advanced

features such as pipelines, issue tracking, wikis, etc...

● Can store a backup remotely and automatically - easy to keep this up to date!

● Helps keep your working space clean

Who Uses VCS?

Who Uses Version Control?
● Programmers
● Applications (Microsoft Word, Google Docs, ...)
● Organizations

● VCS can be used to sync data, not just code

9/17/18

3

Types of VCS

Types of VCS -- Centralized

● There exists a single "central" copy
of the project

○ All developers commit to this single copy
● Each developer has local working copy(ies)

○ As soon as they commit, the central repo
reflects the changes

Centralized version control

• (old model)
• Examples: Concurrent Versions System (CVS)

Subversion (SVN)
Master Repository

Yuriy’s
laptop

checkout

Yuriy’s
desktop

checkout

Bob’s
checkout

Alice’s
desktop

checkout

Alice’s
laptop

checkout

Doing work

• I update my checkout (working copy)
• I edit
• I update my checkout again
• I merge changes if necessary
• I commit my changes to the Master

Master Repository

Yuriy’s
laptop

checkout

Yuriy’s
desktop

checkout

Bob’s
checkout

Alice’s
desktop

checkout

Alice’s
laptop

checkout

Problems with centralized VC

• What if I don’t have a network connection?

• What if I am implementing a big change?

• What if I want to explore project history later?

Types of VCS -- Distributed

● Each developer has their own repository.
○ Created by the developer, or
○ Cloned from an existing (remote) repository

● Developers work on their own repos
○ They can commit, branch, etc.
○ Activity is local unless it is pushed to remote repo
○ Remote activity is not seen until dev fetches

from the remote repo

● Examples: Mercurial (hg), git

9/17/18

4

Distributed version control model
Master Repository

Yuriy’s
laptop

working
copy

Yuriy’s
desktop
working

copy

Bob’s
working

copy

Alice’s
Desktop
working

copy

Alice’s
laptop

working
copy

Alice’s Laptop
Repository

Alice’s Desktop
Repository

Bob’s Repository

Yuriy’s Laptop
Repository

Yuriy’s Desktop
Repository

Doing work

• I pull from the Master
• I update my checkout
• I edit
• I commit
• I pull from the Master
• I merge tips if necessary and commit again
• I push my changes to the Master

Master Repository

Yuriy’s
desktop
working

copy

Yuriy’s Desktop
Repository

History view (log)

• Bill and Melinda work at the
same time

• At the end, all repositories have
the same, rich history

Pros and Cons of Centralized VCS

A Motivating Example: What is this git command?
NAME

git-______ - ______ file contents to the index
SYNOPSIS

git ______ [--dry-run | -n] [--force | -f] [--interactive | -i] [--patch | -p]
DESCRIPTION
This command updates the index using the current content found in the working
tree, to prepare the content staged for the next commit. It typically ______s the
current content of existing paths as a whole, but with some options it can also
be used to ______ content with only part of the changes made to the working tree
files applied, or remove paths that do not exist in the working tree anymore.

9/17/18

5

A Motivating Example: What is this git command?
NAME

git-add - Adds file contents to the index
SYNOPSIS

git add [--dry-run | -n] [--force | -f] [--interactive | -i] [--patch | -p]
DESCRIPTION
This command updates the index using the current content found in the working
tree, to prepare the content staged for the next commit. It typically adds the
current content of existing paths as a whole, but with some options it can also
be used to add content with only part of the changes made to the working tree
files applied, or remove paths that do not exist in the working tree anymore.

A Motivating Example: What is this git command?
NAME

git-______ - Switch branches or restore working tree files

SYNOPSIS
git ______ [-q] [-f] [-m] [<branch>]

DESCRIPTION

Updates files in the working tree to match the version in the index or the
specified tree. If no paths are given, git ______ will also update HEAD to set

the specified branch as the current branch.

A Motivating Example: What is this git command?
NAME

git-checkout - Switch branches or restore working tree files

SYNOPSIS
git checkout [-q] [-f] [-m] [<branch>]

DESCRIPTION
Updates files in the working tree to match the version in the index or the
specified tree. If no paths are given, git checkout will also update HEAD to set

the specified branch as the current branch.

A Motivating Example: What is this git command?
NAME

git-______ - Forward-port local commits to the updated upstream head
SYNOPSIS

git ______ [-i | --interactive] [options] [--exec <cmd>] [--onto <newbase>]
[<upstream> [<branch>]]

git ______ [-i | --interactive] [options] [--exec <cmd>] [--onto <newbase>]
--root [<branch>]

git ______ --continue | --skip | --abort | --edit-todo
DESCRIPTION
If <branch> is specified, git ______ will perform an automatic git checkout
<branch> before doing anything else. Otherwise it remains on the current branch.

If <upstream> is not specified, the upstream configured in branch.<name>.remote
and branch.<name>.merge options will be used (see git-config[1] for details) and
the --fork-point option is assumed. If you are currently not on any branch or if
the current branch does not have a configured upstream, the ______ will abort.

A Motivating Example: What is this git command?
NAME

git-rebase - Forward-port local commits to the updated upstream head
SYNOPSIS

git rebase [-i | --interactive] [options] [--exec <cmd>] [--onto <newbase>]
[<upstream> [<branch>]]

git rebase [-i | --interactive] [options] [--exec <cmd>] [--onto <newbase>]
--root [<branch>]

git rebase --continue | --skip | --abort | --edit-todo
DESCRIPTION
If <branch> is specified, git rebase will perform an automatic git checkout
<branch> before doing anything else. Otherwise it remains on the current branch.

If <upstream> is not specified, the upstream configured in branch.<name>.remote
and branch.<name>.merge options will be used (see git-config[1] for details) and
the --fork-point option is assumed. If you are currently not on any branch or if
the current branch does not have a configured upstream, the rebase will abort.

Our goal with git

Be able to understand the git man-pages

9/17/18

6

Git Basics
How Git Works

Git Basics -- Tracked vs. Untracked
● untracked file - a file not currently under version control
● tracked file - a file that is under version control

Git Basics -- Three Main Stages
1. Committed: Everything in the file is

currently in the database
2. Modified: Changed the file but have

not committed to the database
3. Staged: Marked the file for addition

to the database in the next commit

Note that all of the above pertain to
tracked files.

Git Basics -- Creating Repositories
Initializing a repository

● git init - Create an empty git repository or reinitialize an existing one
○ --bare - create a bare repository
○ [directory] - git init is run inside the provided directory

● git init creates a .git folder in the directory chosen

Git Basics -- Creating Repositories
Cloning a Repository

● git clone - Clone a repository into a new directory
○ --depth <depth> - Create a shallow clone with a history truncated to <depth> commits
○ --branch <name> - Point local HEAD to specific branch (more on HEAD in a bit!)
○ --origin <name> - Use <name> to keep track of remote repo instead of 'origin'

● Basically, clone just:
○ calls init
○ points some meta variables at an existing repository
○ copies the data to the new repo

.git/

● What's in it?
○ branches/:
○ COMMIT_EDITMSG: most recent commit message
○ config: configure your git repository
○ description: only used by the GitWeb program (source)
○ hooks/: This contains client or server-side hook scripts (more info)
○ index: The "staging area"
○ info/: keeps a global exclude file for your project
○ logs/: keeps track of history of HEAD and refs
○ objects/: where the actual content is stored
○ refs/: keeps track of refs and tags

https://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain
https://git-scm.com/book/en/v2/ch00/_git_hooks

9/17/18

7

.git/
● What's in it?

○ branches/:
○ COMMIT_EDITMSG: most recent commit message
○ config: configure your git repository
○ description: only used by the GitWeb program (source)
○ hooks/: This contains client or server-side hook scripts (more info)
○ index: The "staging area"
○ info/: keeps a global exclude file for your project
○ logs/: keeps track of history of HEAD and refs
○ objects/: where the actual content is stored in a database
○ refs/: keeps track of refs and tags

Git Vocabulary

Git Vocabulary
● index: staging area (located .git/index)
● content
● tree
● working tree
● staged
● commit
● ref
● branch
● HEAD
● upstream

Git Vocabulary
● index: staging area (located .git/index)
● content: git tracks what's in a file, not the file itself
● tree
● working tree
● staged
● commit
● ref
● branch
● HEAD
● upstream

Git Vocabulary
● index: staging area (located .git/index)
● content: git tracks what's in a file, not the file itself
● tree: git's representation of a file system.
● working tree
● staged
● commit
● ref
● branch
● HEAD
● upstream

Git Vocabulary
● index: staging area (located .git/index)
● content: git tracks what's in a file, not the file itself
● tree: git's representation of a file system.
● working tree: Tree representing what is currently checked out (what you see)
● staged
● commit
● ref
● branch
● HEAD
● upstream

https://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain
https://git-scm.com/book/en/v2/ch00/_git_hooks

9/17/18

8

Git Vocabulary
● index: staging area (located .git/index)
● content: git tracks what's in a file, not the file itself
● tree: git's representation of a file system.
● working tree: Tree representing what is currently checked out (what you see)
● staged: ready to be committed (in index/will be stored in a commit object)
● commit
● ref
● branch
● HEAD
● upstream

Git Vocabulary
● index: staging area (located .git/index)
● content: git tracks what's in a file, not the file itself
● tree: git's representation of a file system.
● working tree: Tree representing what is currently checked out (what you see)
● staged: ready to be committed (in index/will be stored in a commit object)
● commit: A set of database entries detailing a snapshot of the working tree
● ref
● branch
● HEAD
● upstream

Git Vocabulary
● index: staging area (located .git/index)
● content: git tracks what's in a file, not the file itself
● tree: git's representation of a file system.
● working tree: Tree representing what is currently checked out (what you see)
● staged: ready to be committed (in index/will be stored in a commit object)
● commit: A set of database entries detailing a snapshot of the working tree
● ref: pointer to a commit object
● branch
● HEAD
● upstream

Git Vocabulary

● index: staging area (located .git/index)
● content: git tracks what's in a file, not the file itself
● tree: git's representation of a file system.
● working tree: Tree representing what is currently checked out (what you see)
● staged: ready to be committed (in index/will be stored in a commit object)
● commit: A set of database entries detailing a snapshot of the working tree
● ref: pointer to a commit object
● branch: basically just a (special) ref. Semantically: represents a line of dev
● HEAD
● upstream

Git Vocabulary

● index: staging area (located .git/index)
● content: git tracks what's in a file, not the file itself
● tree: git's representation of a file system.
● working tree: Tree representing what is currently checked out (what you see)
● staged: ready to be committed (in index/will be stored in a commit object)
● commit: A set of database entries detailing a snapshot of the working tree
● ref: pointer to a commit object
● branch: basically just a (special) ref. Semantically: represents a line of dev
● HEAD: a ref pointing to branch/commit being worked on (i.e., Working Tree)
● upstream

Git Vocabulary

● index: staging area (located .git/index)
● content: git tracks what's in a file, not the file itself
● tree: git's representation of a file system.
● working tree: Tree representing what is currently checked out (what you see)
● staged: ready to be committed (in index/will be stored in a commit object)
● commit: A set of database entries detailing a snapshot of the working tree
● ref: pointer to a commit object
● branch: basically just a (special) ref. Semantically: represents a line of dev
● HEAD: a ref pointing to branch/commit being worked on (i.e. Working Tree)
● upstream: complicated, basically "backwards in time" (but not quite!)

9/17/18

9

Git Basics
Working Locally

Git Basics: Changing Content -- git add
git add does two things:

1. given an untracked file it will
a. start tracking it
b. update /.git/index using the current content found in the working tree to prep the content for the

next commit (i.e., the content is staged)
2. given a modified unstaged file it will

a. stage its contents for commit

--patch, -p: start an interactive staging session that lets you choose portions
of a file to add to the next commit.

Git Basics: Changing Content -- git commit

git commit updates the Git database with staged content in /.git/index

● Note that staged files can have unstaged changes
● By default this will open an editor for you to enter a commit message

--message=<msg>, -m <msg>: Add <msg> as the commit message. If multiple
messages are given, concatenate as separate paragraphs
--patch, -p: Use the interactive patch selection interface to choose which
changes to commit (similar to git add -p)

Git Basics
Making Queries

Git Basics: Making Queries -- git status

git status shows the working tree status. This command displays:

● paths that have differences between the index file and the current HEAD
● paths that have differences between the working tree and the index file
● paths in the working tree that are not tracked by git

--short, -s: Give the output in the short-format
--ignored: Show ignored files

Git Basics: Making Queries -- git log

git log inspects commit history with multiple display options

● git log is basically a wrapper around git rev-list and git diff-* (don't
worry about these - I sure don't!)

Some Examples

git log
git log --graph
git log --graph --all
git log --graph --all --oneline

9/17/18

10

Git Basics: Making Queries -- git log

...Some Examples

git log --graph --abbrev-commit --decorate --
format=format:'%C(bold blue)%h%C(reset) - %C(bold
cyan)%aD%C(reset) %C(bold green)(%ar)%C(reset) %C(bold
cyan)(committed: %cD)%C(reset) %C(auto)%d%C(reset)%n''
%C(white)%s%C(reset)%n'' %C(dim white)- %an <%ae>
%C(reset) %C(dim white)(committer: %cn <%ce>)%C(reset)'

Git Merge

Git Rebase

Changing Commit History with Rebase
● Git rebase lets us change our commit history
● rebase is a powerful tool, but we will only scratch the surface

9/17/18

11

Changing Commit History with Rebase
● Git rebase --onto gives us a bit more power

9/17/18

12

Why use Git Rebase?

Points of Confusion

Fork vs. Clone

9/17/18

13

Fork vs. Clone

Fork
Fork is NOT A GIT CONCEPT

● it was invented by GitHub
● Fork stores extra information and makes

pull requests possible

Clone
Clone IS A GIT CONCEPT

● clone extends init
● exists independent of github

Branch vs. Clone

Branch vs. Clone

Branch

Branch creates a ref

Clone

Clone creates a new
repository

Pull vs. Fetch

Pull vs. Fetch

Fetch
● Take target branch from a remote

repository and store it in
.git/refs/remotes/

● NOT integrated/merged with local
branches!!!!!

Pull
● Fetches remote branch and mergeswith

local branch or repository

Next time: Thursday (September 20)
● First in-class exercise
● On using git (today is a prelude with useful info)
● Form 4-person teams

○ Use moodle to self-select a team; can do it before Thursday or on Thursday
● At least one person per team needs to bring a laptop

BRING A LAPTOP!

