CS 520

Theory and Practice of Software Engineering

Fall 2018

Object Oriented (OO) Design Principles

September 13, 2018

9/13/18

Today

e Code review and (re)design of an MVC application

e OO design principles
o Information hiding (and encapsulation)
Polymorphism
Openl/closed principle
Inheritance in Java
The diamond of death
Liskov substitution principle
Composition/aggregation over inheritance

o 0o 0o o o o

Let’s review the code of the following application

10

Numbers: 6

1,2,2,2,1,10,

Median: 2.0

Simple stats

Add number

Reset

Mean: 3.0

Source code available on the course web site

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

Information hiding

MyClass

+ o+ + + 4+

nElem : int
capacity : int
top : int

elems : int[]
canResize : bool

resize(s:int):void
push(e:int):void
capacityLeft():int
getNumElem():int
pop():int
getElems():int[]

+ o+ o+ o+ + +

public class MyClass {

public
public
public
public
public

public
public
public
public
public
public

int nElem;

int capacity;

int top;

int[] elems;
boolean canResize;

void resize(int s){...}
void push(int e){...}
int capacityLeft(){...}
int getNumElem(){...}
int pop(){...}

int[] getElems(){...}

Information hiding

MyClass public‘cl.ass MyClass {
- public int nElem;
+ nElem : int public int capacity;
+ capacity : int public int top;
+ top : int public int[] elems;
+ elems : int[] public boolean canResize;
+ canResize : bool e
+ resize(s:int):void public void resize(int s){...}
+ push(e:int):void public void push(int e){...}
+ capacityLeft():int public int capacityLeft(){...}
+ getNumElem():int public int getNumElem(){...}
+ pop():int public int pop(){...}
+ getElems():int[] public int[] getElems(){...}

i

What does MyClass do?

Information hiding

9/13/18

Stack

+ nElem : int
capacity : int
top : int
elems : int[]

+
+
+
+ canResize : bool

public
public
public
public
public

resize(s:int):void
push(e:int):void
capacitylLeft():int
getNumElem():int
pop():int
getElems():int[]

+
+
+
+
+
+

public
public
public
public
public
public

¥

public class Stack {

int nElem;

int capacity;

int top;

int[] elems;
boolean canResize;

void resize(int s){...}
void push(int e){...}
int capacityLeft(){...}
int getNumElem(){...}
int pop(){...}

int[] getElems(){...}

Information hiding

Stack Stack
+n . int - elems : int[]
+ capasjty : int
+ top : + push(e:int):void
+ elems : + pop():int
+ canResize 001 .o

resize(s:int):vid
push(e:int):void
capacityLeft():int
getNumElem():int
pop():int

Information hiding:
e Reveal as little information
about internals as possible.

+ o+ o+ o+ + o+

getElems():int[] e Separate public interface

Anything that could be improved in this implementation?

from implementation details.
e Reduce complexity.

Information hiding vs

. visibility

Public

???

Private

Information hiding vs. visibility

Public

e Protected, package-private,
or friend-accessible (C++).

2?2 e Not part of the public API.

o |Implementation detail that a

subclass/friend may rely on.

Private

OO design principles

Polymorphism
Open/closed principle
Inheritance in Java
The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

Information hiding (and encapsulation)

A little refresher: what is Polymorphism?

P o}

A little refresher: what is Polymorphism?
An object’s ability to provide different behaviors.

Types of polymorphism

e Ad-hoc polymorphism (e.g., operator overloading)
o a+b = String vs. int, double, etc.

e Subtype polymorphism (e.g., method overriding)
o Object obj = ...; = toString() can be overridden in subclasses
obj.toString () ; and therefore provide a different behavior.

e Parametric polymorphism (e.g., Java generics)
o class LinkedList<E> { = A LinkedList can store elements
void add(E) {...} regardless of their type but still
E get (int index) {...} provide full type safety.

9/13/18

A little refresher: what is Polymorphism?
An object’s ability to provide different behaviors.

Types of polymorphism

e Subtype polymorphism (e.g., method overriding)
o Object obj = ...; = toString() can be overridden in subclasses
obj.toString() ; and therefore provide a different behavior.

Subtype polymorphism is essential to many OO design principles.

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

Open/closed principle

Software entities (classes, components, etc.) should be:
e open for extensions
e closed for modifications

public static void draw(Object o) {
if (o instanceof Square) {
drawSquare((Square) o)
} else if (o instanceof Circle) {
drawCircle((Circle) o);
} else {

Square
+ drawSquare()

Circle

¥ + drawCircle()

X

Good or bad design?

Open/closed principle

Software entities (classes, components, etc.) should be:
e open for extensions
o closed for modifications

Square

Open/closed principle

Software entities (classes, components, etc.) should be:
e open for extensions
e closed for modifications

+ d}stquar‘e()

AN
Cir‘c]}\

} else {

¥
X

+ drawCircle

Violates the open/closed
principle!

public static void draw(Object s) { <<interface>>
if (s instanceof Shape) {
s.draw(); Shape
}else { + draw()
} t
) Rl o
public static void draw(Shape s) { |Square ” Circle | | |
s.draw();
}

9/13/18

OO design principles

Information hiding (and encapsulation)

Polymorphism

Open/closed principle
Inheritance in Java
The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

Inheritance: (abstract) classes and interfaces

Sequentiallist
{abstract}

LinkedList

Inheritance: (abstract) classes and interfaces

LinkedList extends SequentialList

Sequentiallist
{abstract}

extends

LinkedList

Inheritance: (abstract) classes and interfaces

LinkedList extends SequentialList

Sequentiallist| |<<interface>>||<<interface>>
{abstract} List Deque
extends
LinkedList

Inheritance: (abstract) classes and interfaces

LinkedList extends SequentialList implements List, Deque

Sequentiallist
{abstract}

<<interface>>

<<interface>>

extends

1 ~

LinkedList

List Deque
implement{ implements
7’

Inheritance: (abstract) classes and interfaces

<<interface>>
Collection

<<interface>>
Iterable

<<interface>>
List

Inheritance: (abstract) classes and interfaces

<<interface>>
Collection

<<interface>>
Iterable

<<interface>>
List

List extends Iterable, Collection

9/13/18

Inheritance: (abstract) classes and interfaces

<<interface>>
Collection

<<interface>>
Iterable

extends

Sequentiallist| | <<interface>>||<<interface>>

{abstract} List Deque
implementf implements
e

extends

1 ~
LinkedList

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

The “diamond of death”: the problem

A
+ getNum():int

C
+ getNum():int

-

A a = new D();
int num = a.getNum();

The “diamond of death”: the problem

A
+ getNum():int

N

A a = new D();

int num = a.getNum(); + getNum():int + getNum():int

Which getNum() method \/
D

should be called?

The “diamond of death”: concrete example

| Animal |

+ canFly():bool

.

Bird Horse
+ canFly():bool + canFly():bool

N~ _—

_Pegasus

Can this happen in Java? Yes, with default methods in Java 8.

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

9/13/18

Design principles: Liskov substitution principle

Motivating example
We know that a square is a special kind of a rectangle. So,
which of the following OO designs makes sense?

Rectangle

| Square I

1

| Rectangle I

Design principles: Liskov substitution principle

Subtype requirement

Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Rectangle

Rectangle

+ width :int
+ height:int

Design principles: Liskov substitution principle

Subtype requirement

Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Rectangle r =
ReCtangle new Rectangle(2,2);

+ width :int
+ height:int

Rectangle

int A = r.getArea();

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Is the subtype requirement fulfilled?

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution principle

Design principles: Liskov substitution principle

Subtype requirement

Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Subtype requirement

Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Rectangle

Rectangle r =

| Rectangle |

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle(2y2)+
new Square(2);
int A = r.getArea();

int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

Rectangle

Rectangle r =

Rack Lol)
3T/

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

new Square(2);

int A = r.getArea();
int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

|\Bectang1e |
N

Violates the Liskov substitution principle!

Design principles: Liskov substitution principle

Subtype requirement

Let object x be of type T1 and object y be of type T2. Further,
let T2 be a subtype of T1 (T2 <: T1). Any provable property
about objects of type T1 should be true for objects of type T2.

Rectangle <«<interface>>
+ width :int Shape
+ height:int
+ setWidth(w:int) _—— -l m - -
+ setHeight(h:int)
+ getArea():int Rectangle | | Square

9/13/18

OO design principles

e |nformation hiding (and encapsulation)

e Polymorphism

e Open/closed principle

e Inheritance in Java

e The diamond of death

e Liskov substitution principle

e Composition/aggregation over inheritance

Inheritance vs. (Aggregation vs. Composition)

Person

Customer

Student Building
public class Student public class Bank { public class Building {
extends Person{ Customer c; Room r;

public Student(){ public Bank(Customer c){ public Building(){

} this.c = c; this.r = new Room();
} }

1 1 1

is-a relationship has-a relationship

Design choice: inheritance or composition?

- =
<<interface>> | <<interface>>
LinkedList | LinkedList

|

| Stack | | Stack |‘—

public class Stack<E> public class Stack<E> implements List<E> {
extends LinkedList<E> { private List<E> 1 = new LinkedList<>();

)..4)

Hmm, both designs seem valid -- what are pros and cons?

Design choice: inheritance or composition?

- =
<<interface>> | <<interface>>
LinkedList | LinkedList

|

| Stack | | Stack |‘—

Pros Pros

e No delegation methods required. e Highly flexible and configurable:

e Reuse of common state and behavior. no additional subclasses required for
c different compositions.

ons Cons

e Exposure of all inherited methods
(a client might rely on this particular
superclass -> can't change it later).

e Changes in superclass are likely to break
subclasses.

Composition/aggregation over inheritance allows more flexibility.

e Allinterface methods need to be
implemented -> delegation methods
required, even for code reuse.

OO design principles: summary

e |nformation hiding (and encapsulation)

e Open/closed principle

e Liskov substitution principle

e Composition/aggregation over inheritance

