

CS 520

Theory and Practice of Software Engineering
Fall 2018


Object Oriented (OO) Design Principles

September 13, 2018

Today

- Code review and (re)design of an MVC application
- OO design principles
 - Information hiding (and encapsulation)
 - Polymorphism
 - Open/closed principle
 - Inheritance in Java
 - The diamond of death
 - Liskov substitution principle
 - Composition/aggregation over inheritance

Let's review the code of the following application

Source code available on the course web site

OO design principles

- **Information hiding (and encapsulation)**
- Polymorphism
- Open/closed principle
- Inheritance in Java
- The diamond of death
- Liskov substitution principle
- Composition/aggregation over inheritance

Information hiding

MyClass
+ nElem : int
+ capacity : int
+ top : int
+ elems : int[]
+ canResize : bool
+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

```
public class MyClass {
  public int nElem;
  public int capacity;
  public int top;
  public int[] elems;
  public boolean canResize;
  ...
  public void resize(int s){...}
  public void push(int e){...}
  public int capacityLeft(){...}
  public int getNumElem(){...}
  public int pop(){...}
  public int[] getElems(){...}
}
```

Information hiding

MyClass
+ nElem : int
+ capacity : int
+ top : int
+ elems : int[]
+ canResize : bool
+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

```
public class MyClass {
  public int nElem;
  public int capacity;
  public int top;
  public int[] elems;
  public boolean canResize;
  ...
  public void resize(int s){...}
  public void push(int e){...}
  public int capacityLeft(){...}
  public int getNumElem(){...}
  public int pop(){...}
  public int[] getElems(){...}
}
```

What does MyClass do?

Information hiding

Stack
+ nElem : int
+ capacity : int
+ top : int
+ elems : int[]
+ canResize : bool
+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

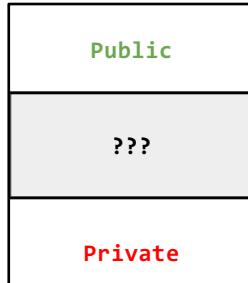
```
public class Stack {
    public int nElem;
    public int capacity;
    public int top;
    public int[] elems;
    public boolean canResize;
    ...
    public void resize(int s){...}
    public void push(int e){...}
    public int capacityLeft(){...}
    public int getNumElem(){...}
    public int pop(){...}
    public int[] getElems(){...}
}
```

Anything that could be improved in this implementation?

Information hiding

Stack
+ nElem : int
+ capacity : int
+ top : int
+ elems : int[]
+ canResize : bool
+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

Stack
- elems : int[]
...
+ push(e:int):void
+ pop():int
...


Information hiding:

- Reveal as little information about internals as possible.
- Separate public interface from implementation details.
- Reduce complexity.

Information hiding vs. visibility

Information hiding vs. visibility

- Protected, package-private, or friend-accessible (C++).
- Not part of the public API.
- Implementation detail that a subclass/friend may rely on.

OO design principles

- Information hiding (and encapsulation)
- **Polymorphism**
- Open/closed principle
- Inheritance in Java
- The diamond of death
- Liskov substitution principle
- Composition/aggregation over inheritance

A little refresher: what is Polymorphism?

A little refresher: what is Polymorphism?

An object's ability to provide different behaviors.

Types of polymorphism

- Ad-hoc polymorphism (e.g., operator overloading)
 - a + b → String vs. int, double, etc.
- Subtype polymorphism (e.g., method overriding)
 - Object obj = ...; → `toString()` can be overridden in subclasses
`obj.toString();` and therefore provide a different behavior.
- Parametric polymorphism (e.g., Java generics)
 - class `LinkedList<E>` { → A `LinkedList` can store elements
`void add(E)` {...} regardless of their type but still
`E get(int index)` {...} provide full type safety.

A little refresher: what is Polymorphism?

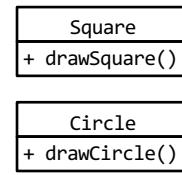
An object's ability to provide different behaviors.

Types of polymorphism

- Subtype polymorphism (e.g., method overriding)
 - Object obj = ...; → `toString()` can be overridden in subclasses
`obj.toString();` and therefore provide a different behavior.

Subtype polymorphism is essential to many OO design principles.

OO design principles


- Information hiding (and encapsulation)
- Polymorphism
- **Open/closed principle**
- Inheritance in Java
- The diamond of death
- Liskov substitution principle
- Composition/aggregation over inheritance

Open/closed principle

Software entities (classes, components, etc.) should be:

- **open** for extensions
- **closed** for modifications

```
public static void draw(Object o) {
    if (o instanceof Square) {
        drawSquare((Square) o)
    } else if (o instanceof Circle) {
        drawCircle((Circle) o);
    } else {
        ...
    }
}
```


Good or bad design?

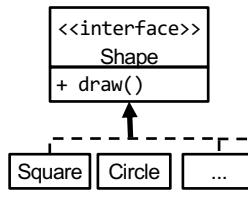
Open/closed principle

Software entities (classes, components, etc.) should be:

- **open** for extensions
- **closed** for modifications

```
public static void draw(Object o) {
    if (o instanceof Square) {
        drawSquare((Square) o)
    } else if (o instanceof Circle) {
        drawCircle((Circle) o);
    } else {
        ...
    }
}
```

Violates the open/closed principle!


Open/closed principle

Software entities (classes, components, etc.) should be:

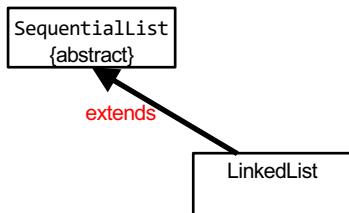
- **open** for extensions
- **closed** for modifications

```
public static void draw(Object s) {
    if (s instanceof Shape) {
        s.draw();
    } else {
        ...
    }
}
```

```
public static void draw(Shape s) {
    s.draw();
}
```

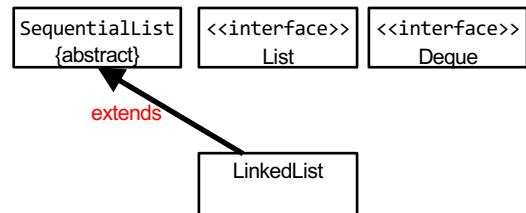

OO design principles

- Information hiding (and encapsulation)
- Polymorphism
- Open/closed principle
- **Inheritance in Java**
- The diamond of death
- Liskov substitution principle
- Composition/aggregation over inheritance

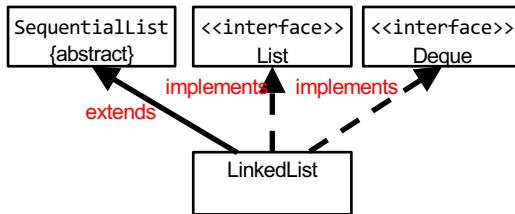

Inheritance: (abstract) classes and interfaces

SequentialList
{abstract}

LinkedList


Inheritance: (abstract) classes and interfaces

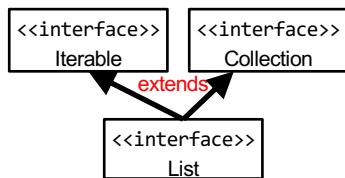
LinkedList **extends** SequentialList


Inheritance: (abstract) classes and interfaces

LinkedList **extends** SequentialList

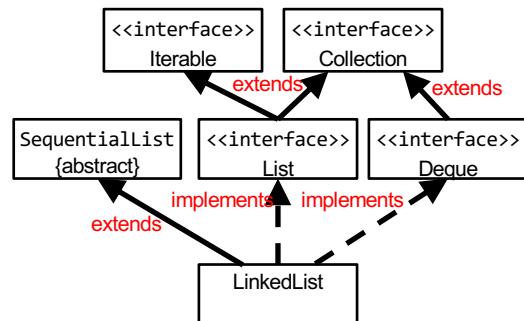
Inheritance: (abstract) classes and interfaces

LinkedList **extends** SequentialList **implements** List, Deque


Inheritance: (abstract) classes and interfaces

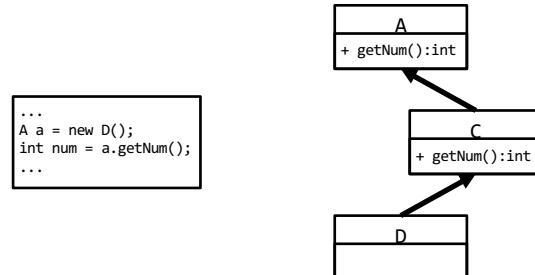
<<interface>>
Iterable

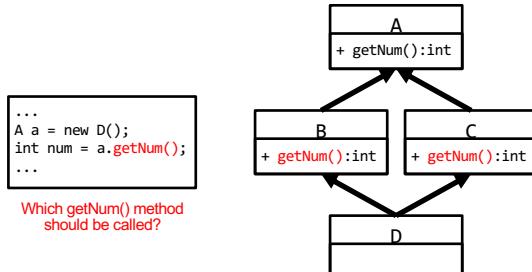
<<interface>>
Collection


<<interface>>
List

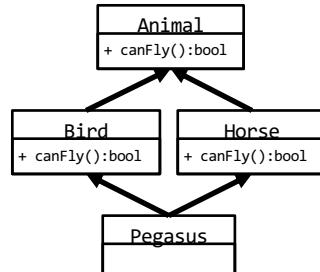
Inheritance: (abstract) classes and interfaces

List **extends Iterable, Collection**


Inheritance: (abstract) classes and interfaces


OO design principles

- Information hiding (and encapsulation)
- Polymorphism
- Open/closed principle
- Inheritance in Java
- **The diamond of death**
- Liskov substitution principle
- Composition/aggregation over inheritance


The “diamond of death”: the problem

The “diamond of death”: the problem

The “diamond of death”: concrete example

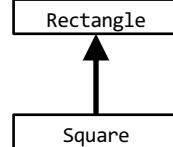
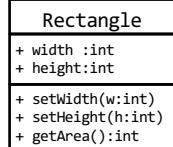
Can this happen in Java? Yes, with default methods in Java 8.

OO design principles

- Information hiding (and encapsulation)
- Polymorphism
- Open/closed principle
- Inheritance in Java
- The diamond of death
- **Liskov substitution principle**
- Composition/aggregation over inheritance

Design principles: Liskov substitution principle

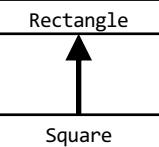
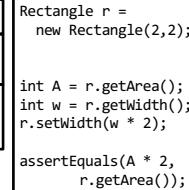
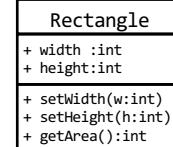
Motivating example



We know that a square is a special kind of a rectangle. So, which of the following OO designs makes sense?

Design principles: Liskov substitution principle

Subtype requirement

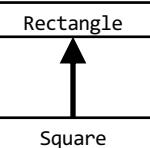
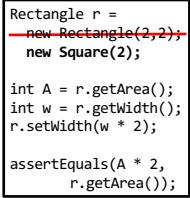
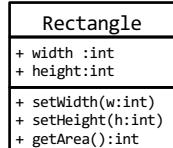
Let object x be of type T_1 and object y be of type T_2 . Further, let T_2 be a subtype of T_1 ($T_2 \subset T_1$). Any provable property about objects of type T_1 should be true for objects of type T_2 .

Is the subtype requirement fulfilled?

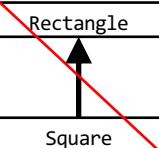
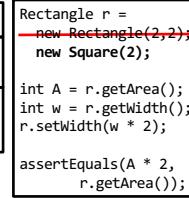
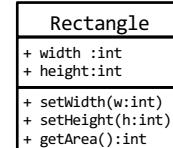
Design principles: Liskov substitution principle

Subtype requirement




Let object x be of type T_1 and object y be of type T_2 . Further, let T_2 be a subtype of T_1 ($T_2 \subset T_1$). Any provable property about objects of type T_1 should be true for objects of type T_2 .

Design principles: Liskov substitution principle

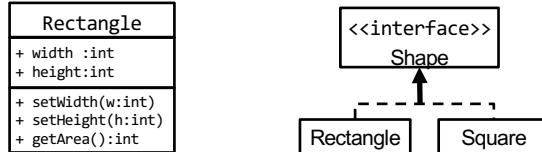
Subtype requirement




Let object x be of type T_1 and object y be of type T_2 . Further, let T_2 be a subtype of T_1 ($T_2 \subset T_1$). Any provable property about objects of type T_1 should be true for objects of type T_2 .

Design principles: Liskov substitution principle

Subtype requirement

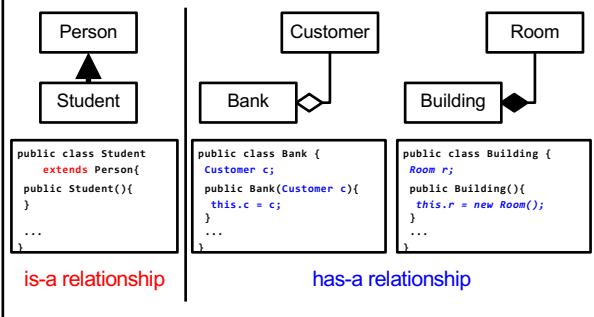
Let object x be of type T_1 and object y be of type T_2 . Further, let T_2 be a subtype of T_1 ($T_2 \subset T_1$). Any provable property about objects of type T_1 should be true for objects of type T_2 .

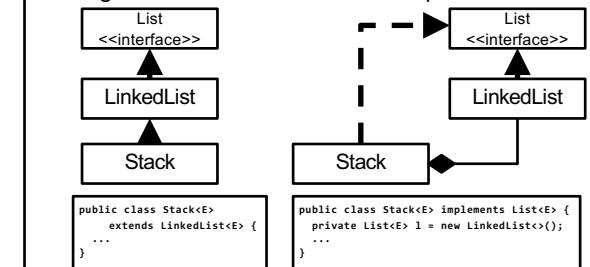


Violates the Liskov substitution principle!

Design principles: Liskov substitution principle

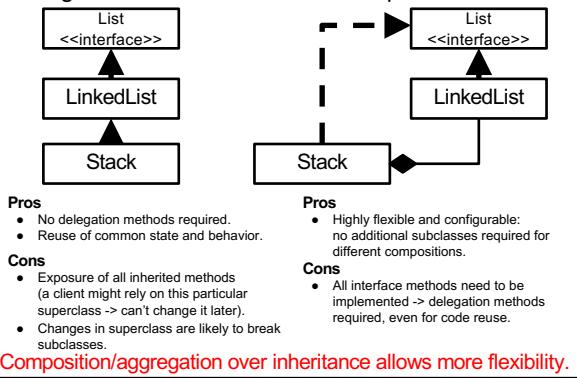
Subtype requirement


Let object x be of type T_1 and object y be of type T_2 . Further, let T_2 be a subtype of T_1 ($T_2 \subset T_1$). Any provable property about objects of type T_1 should be true for objects of type T_2 .


OO design principles

- Information hiding (and encapsulation)
- Polymorphism
- Open/closed principle
- Inheritance in Java
- The diamond of death
- Liskov substitution principle
- **Composition/aggregation over inheritance**

Inheritance vs. (Aggregation vs. Composition)



Design choice: inheritance or composition?

Hmm, both designs seem valid -- what are pros and cons?

Design choice: inheritance or composition?

OO design principles: summary

- Information hiding (and encapsulation)
- Open/closed principle
- Liskov substitution principle
- Composition/aggregation over inheritance