
9/5/18

1

CS 520
Theory and Practice of Software Engineering

Fall 2018

Software architecture and design/UML crash course

September 6, 2018

Recap: Software Engineering

What is Software Engineering?
The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.

Why is it important?
● Software is everywhere and complex.
● Software defects are expensive (and annoying).

Goals
● Decompose a complex engineering problem.
● Organize processes and effort.
● Improve software reliability.
● Improve developer productivity.

Recap: Software Engineering

What is Software Engineering?
The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.

Why is it important?
● Software is everywhere and complex.
● Software defects are expensive (and annoying).

Goals
● Decompose a complex engineering problem.
● Organize processes and effort.
● Improve software reliability.
● Improve developer productivity.

Today

● Modeling and abstraction
● Software architecture vs. software design
● UML crash course

Software development: the high-level problem

Specification

???

Source code

One solution: “Here happens a miracle”

Software development: the high-level problem

Specification

???

Source code

9/5/18

2

Software development: the high-level problem

Another solution: Modeling the architecture and design

Specification

???

Source code

What is modeling?

Building an abstract representation of reality
● Ignoring (insignificant) details.
● Level of abstraction depends on viewpoint and purpose:

○ Communication
○ Verification
○ Code generation

● Focusing on the most important aspects/properties.

Is abstraction == simplification?

Different levels of abstraction

Source code

Example: Linux Kernel
● 16 million Lines of Code!
● What does the code do?
● Are there dependencies?
● Are there different layers?

Different levels of abstraction

Source code

Example: Linux Kernel
● 16 million Lines of Code!
● What does the code do?
● Are there dependencies?
● Are there different layers?

Call graph

Layer diagram

Architecture vs. design

Specification

Architecture

Design

Source code

What’s the difference?

Development
process Level of

abstraction

Software architecture vs. design

Architecture (what components are developed?)
● Considers the system as a whole:

○ High-level view of the overall system.
○ What components exist?
○ What type of storage, database, communication, etc?

Design (how are the components developed?)
● Considers individual components:

○ Data representation
○ Interfaces, Class hierarchies
○ …

9/5/18

3

A first example

???B,CS520,Juan
B,CS320,Juan
A,CS520,Jane
A,CS520,Jon

2 A
1 B

Goal: group and count CS520 grades.

Architecture or design pattern?

grep CS520 grades.csv | cut -f 1 -d ‘,’ | sort | uniq -c
B,CS520,Juan
B,CS320,Juan
A,CS520,Jane
A,CS520,Jon

2 A
1 B

Software architecture: Pipe and Filter

grep CS520 grades.csv | cut -f 1 -d ‘,’ | sort | uniq -c
B,CS520,Juan

B,CS320,Juan

A,CS520,Jane

A,CS520,Jon

2 A

1 B

The architecture doesn’t specify the design or implementation
details of the individual components (filters)!

Software architecture: Client-server / n-tier

Presentation

Business logic

Client

Data access DB

Simplifies reusability, exchangeability, and distribution.

Software architecture: Model View Controler

View Controller

Model

Client
sees uses

manipulatesupdates

Separates data representation (Model),
visualization (View), and client interaction (Controller)

Model View Controler: example

Simple weather station

25° F

-4° C min: 20° F
max: 35° F

Current 30 day history

Temp. sensor

Reset

Reset history
button

01/01 -> 0
01/02 -> - 5
01/03 -> -10
01/04 -> - 4
...

9/5/18

4

Model View Controler: example

Simple weather station

25° F

-4° C min: 20° F
max: 35° F

Current 30 day history

Temp. sensor

Reset

Reset history
button

01/01 -> 0
01/02 -> - 5
01/03 -> -10
01/04 -> - 4
...

Model

Controler

View

Summary: Software architecture vs. design

Architecture and design goals
● Lower complexity: separation of concerns, well defined interfaces
● Simplify communication
● Allow effort estimation and progress monitoring

View Controller

Model

Client uses

manipulatesupdates

sees
Presentation layer

Business logic layer

Data access layer DB

Client

UML crash course

The main questions
● What is UML?
● Is it useful, why bother?
● When to (not) use UML?

What is UML?

● Unified Modeling Language.
● Developed in the mid 90’s, improved since.
● Standardized notation for modeling OO systems.
● A collection of diagrams for different viewpoints:

○ Use case diagrams
○ Component diagrams
○ Class and Object diagrams
○ Sequence diagrams
○ Statechart diagrams
○ ...

What is UML?

● Unified Modeling Language.
● Developed in the mid 90’s, improved since.
● Standardized notation for modeling OO systems.
● A collection of diagrams for different viewpoints:

○ Use case diagrams
○ Component diagrams
○ Class and Object diagrams
○ Sequence diagrams
○ Statechart diagrams
○ ...

What is UML?

● Unified Modeling Language.
● Developed in the mid 90’s, improved since.
● Standardized notation for modeling OO systems.
● A collection of diagrams for different viewpoints:

○ Use case diagrams
○ Component diagrams
○ Class and Object diagrams
○ Sequence diagrams
○ Statechart diagrams
○ ...

9/5/18

5

Are UML diagrams useful? Are UML diagrams useful?

Communication
● Forward design (before coding)

○ Brainstorm ideas (on whiteboard or paper).
○ Draft and iterate over software design.

Documentation
● Backward design (after coding)

○ Obtain diagram from source code.

Code generation
● Generating source code from diagrams is challenging.
● Code generation may be useful for skeletons.

In this class, we will use UML class diagrams mainly for
visualization and discussion purposes.

Classes vs. objects

Class
● Grouping of similar objects.

○ Student
○ Car

● Abstraction of common properties and behavior.
○ Student: Name and Student ID
○ Car: Make and Model

Object
● cfrom the real world.
● Instance of a class

○ Student: Juan (4711), Jane (4712), …
○ Car: Audi A6, Honda Civic, Tesla S,...

UML class diagram: basic notation

MyClass

UML class diagram: basic notation

MyClass
- attr1 : type

+ foo() : ret_type

Name

Attributes
<visibility> <name> : <type>

Methods
<visibility> <name>(<param>*) : <return type>
<param> := <name> : <type>

UML class diagram: basic notation

MyClass
- attr1 : type
attr2 : type
+ attr3 : type

~ bar(a:type) : ret_type
+ foo() : ret_type

Name

Attributes
<visibility> <name> : <type>

Methods
<visibility> <name>(<param>*) : <return type>
<param> := <name> : <type>

Visibility
- private
~ package-private
protected
+ public

9/5/18

6

UML class diagram: basic notation

MyClass
- attr1 : type
attr2 : type
+ attr3 : type

~ bar(a:type) : ret_type
+ foo() : ret_type

Name

Attributes
<visibility> <name> : <type>

Methods
<visibility> <name>(<param>*) : <return type>
<param> := <name> : <type>

Static attributes or methods are underlined

Visibility
- private
~ package-private
protected
+ public

UML class diagram: concrete example

public class Student
extends Person {

private int id;
public Student(String name,

int id) {
...

}

public int getId() {
return this.id;

}
}

Student

- id : int
+ Student(name:String, id:int)
+ getId() : int

Personpublic class Person {
...

}

So why bother with UML
when you have code?

Classes, abstract classes, and interfaces

<<interface>>
MyInterface

MyAbstractClass
{abstract}

MyClass

Classes, abstract classes, and interfaces

MyClass

public class MyClass {

public void op() {
...

}

public int op2() {
...

}
}

<<interface>>
MyInterface

MyAbstractClass
{abstract}

public abstract class
MyAbstractClass {

public abstract void op();

public int op2() {
...

}
}

public interface
MyInterface {

public void op();

public int op2();
}

Level of detail in a given class or interface may vary and
depends on context and purpose.

UML class diagram: Inheritance

SubClass

<<interface>>
AnInterface

SuperClass

public class SubClass extends SuperClass implements AnInterface

is-a relationship

UML class diagram: Aggregation and Composition

Part

Whole

Part

Whole

Aggregation Composition

has-a relationship has-a relationship

● Existence of Part does not depend
on the existence of Whole.

● Lifetime of Part does not depend
on Whole.

● No single instance of whole is the
unique owner of Part (might be shared
with other instances of Whole).

● Part cannot exist without Whole.
● Lifetime of Part depends on Whole.
● One instance of Whole is the single

owner of Part.

9/5/18

7

Aggregation or Composition?

Room

Building

Customer

Bank
? ? ? ?

Aggregation or Composition?

Room

Building

Customer

Bank

Composition Aggregation

What about class and students or body and body parts?

UML class diagram: multiplicity

A B1 1

Each A is associated with exactly one B
Each B is associated with exactly one A

A B1..2 *

Each A is associated with any number of Bs
Each B is associated with exactly one or two As

UML class diagram: navigability

A B
Navigability: not specified

A B
Navigability: unidirectional

“can reach B from A”

A B
Navigability: bidirectional

UML class diagram: example Summary: UML

● Unified notation for modeling OO systems.
● Allows different levels of abstraction.
● Suitable for design discussions and documentation.
● Generating code from diagrams is challenging.

