CS 520

Theory and Practice of Software Engineering
Fall 2018

Software architecture and design/UML crash course

September 6, 2018

Recap: Software Engineering

What is Software Engineering?

The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.
Why is it important?

e Software is everywhere and complex.

e Software defects are expensive (and annoying).

Goals

e Decompose a complex engineering problem.
e Organize processes and effort.

e Improve software reliability.

e Improve developer productivity.

Recap: Software Engineering

What is Software Engineering?

The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.
Why is it important?

e Software is everywhere and complex.

e Software defects are expensive (and annoying).

Goals

e Decompose a complex engineering problem.
e Organize processes and effort.

e Improve software reliability.

e Improve developer productivity.

Today

e Modeling and abstraction

e Software architecture vs. software design
o UML crash course

Software development: the high-level problem

Specification Source code

Software development: the high-level problem

One solution: “Here happens a miracle”

Specification Source code

9/5/18

What is modeling?

Building an abstract representation of reality
e Ignoring (insignificant) details.

e |evel of abstraction depends on viewpoint and purpose:
o Communication
o Verification
o Code generation

e Focusing on the most important aspects/properties.

Is abstraction == simplification?

Different levels of abstraction

Call graph
Source code ™
Layer diagram
Example: Linux Kernel (ST) -

e 16 million Lines of Code!
e What does the code do?
e Are there dependencies?
o Are there different layers?

(GNU C lirary (glibc) |

Software development: the high-level problem
Another solution: Modeling the architecture and design
Specification Source code
Different levels of abstraction
Source code
Example: Linux Kernel
e 16 million Lines of Code!
e \What does the code do?
e Are there dependencies?
e Are there different layers?
Architecture vs. design
Specification 4)
o
P .
Architecture
Development Level of
process abstraction
V' Source code H
What's the difference?

Software architecture vs. design

Architecture (what components are developed?)
e Considers the system as a whole:

o High-level view of the overall system.

o What components exist?

o What type of storage, database, communication, etc?

Design (how are the components developed?)
e Considers individual components:
o Data representation

o Interfaces, Class hierarchies
o ...

9/5/18

A first example f/.
3

B,CS520,Juan ??? 2A
| 18
L

B,CS320,Juan}

Goal: group and count CS520 grades.

9/5/18

Architecture or design pattern?

B,CS520,Juan 2A
grep CS520 grades.csv | cut-f1-d ", | sort | uniq-c = | g

B,CS320,Juan|

Software architecture: Pipe and Filter

B,CS520,Juan 2A
grep CS520 grades.csv | cut-f1-d "’ | sort |unig-c =) 18

B,CS320,Juan
A,CS520,Jane
A,CS520,Jon

The architecture doesn’t specify the design or implementation
details of the individual components (filters)!

Software architecture: Client-server / n-tier

Client >

| Presentation |

¢

| Business logic |
¢
| Data access

Simplifies reusability, exchangeability, and distribution.

Software architecture: Model View Controler

sees,
View Controller
update: anipulates
Model

Separates data representation (Model),
visualization (View), and client interaction (Controller)

Model View Controler: example

Simple weather station
Current 30 day history

25°F Q<;

4°C min: 20° F
max: 35° F Temp. sensor

Reset history
button

Model View Controler: example Model

Simple weather station
Current 30 day history

PP =
4°C min: 20° F
max: 35° F Temp. sensor

View

Reset history
button

Controler

Summary: Software architecture vs. design

! CClient Da\yses

X e
Presentation layer
X [view | Controller
Business logic layer
ce: ate ipulat
Data access layer updates Model manipulates
AN

Architecture and design goals
e Lower complexity: separation of concerns, well defined interfaces

e Simplify communication
o Allow effort estimation and progress monitoring

UML crash course

The main questions

o What is UML?

e s it useful, why bother?
e \When to (not) use UML?

What is UML?

Unified Modeling Language.

Developed in the mid 90’s, improved since.
Standardized notation for modeling OO systems.
A collection of diagrams for different viewpoints:
Use case diagrams

Component diagrams

Class and Object diagrams

Sequence diagrams

Statechart diagrams

oo o o0 0 o0

What is UML?

Unified Modeling Language.
Developed in the mid 90’s, improved since.
Standardized notation for modeling OO systems.

A collection of diagrams for different viewpoints:
Use case diagrams =) —
Component diagrams
Class and Object diagrams
Sequence diagrams
Statechart diagrams

0O 0 0 0 o0 0

What is UML?

Unified Modeling Language.
Developed in the mid 90’s, improved since.
Standardized notation for modeling OO systems.

A collection of diagrams for different viewpoints:
Use case diagrams
Component diagrams

Class and Object diagrams
Sequence diagrams
Statechart diagrams

o
o
o
o
o
o

9/5/18

Are UML diagrams useful?

Are UML diagrams useful?

Communication

e Forward design (before coding)
o Brainstorm ideas (on whiteboard or paper).
o Draft and iterate over software design.

Documentation
e Backward design (after coding)
o Obtain diagram from source code.
Code generation
e Generating source code from diagrams is challenging.
e Code generation may be useful for skeletons.
In this class, we will use UML class diagrams mainly for
visualization and discussion purposes.

Classes vs. objects

Class
e Grouping of similar objects.
o Student
o Car
e Abstraction of common properties and behavior.

o Student: Name and Student ID
o Car: Make and Model

Object

e cfrom the real world.

e Instance of a class
o Student: Juan (4711), Jane (4712), ...
o Car: Audi A6, Honda Civic, Tesla S,...

UML class diagram: basic notation

MyClass

UML class diagram: basic notation

Name
MyClass
- attrl : type Attributes
<visibility> <name> : <type>
Methods
+ 'Foo() . ret_type <visibility> <name>(<param>*) : <return type>
- <param> := <name> : <type>

UML class diagram: basic notation

Name
MyClass
- attrl : type Attributes
attr2 : type <visibilitys> <name> : <type>

+ attr3 : type

bar(a:type) : ret_type Methods
+ foo() : ret_type

?

<visibility> <name>(<params*) : <return type>
<param> := <name> : <type>

Visibility

- private

~ package-private
protected

+ public

9/5/18

UML class diagram: basic notation

Name
MyClass
- attrl : type Attributes
attr2 : type <visibility> <name> : <type>
rallrd : fvpe = Static attributes or methods are underiined
N : ; Methods
+ foo() : ret_type <visibility> <names(<param>*) : <return type>
- <param> := <name> : <type>
Visibility
- private

~ package-private
protected
+ public

UML class diagram: concrete example

public class Person { Person

} 7y

Student

public class Student
extends Person {

private int id; - id : int
public Student(String name,
int id) {

+ Student(name:String, id:int)
+ getId() : int

}...

public int getId() {
return this.id;

So why bother with UML

} ¥ when you have code?

Classes, abstract classes, and interfaces

MyClass <<interface>>

MyInterface

MyAbstractClass
{abstract}

Classes, abstract classes, and interfaces

MyClass <<interface>>

MyInterface

MyAbstractClass
{abstract}

public interface
MyInterface {

public class MyClass { public abstract class

MyAbstractClass {

public void op() { public abstract void op(); public void op();

}
public int op2();

public int op2() { public int op2() {

} }
} }

Level of detail in a given class or interface may vary and
depends on context and purpose.

UML class diagram: Inheritance

<<interface>>
Anlinterface

SupercClass

is-a relationship ¢

7/

SubClass

public class SubClass extends SuperClass implements AnInterface

UML class diagram: Aggregation and Composition

Aggregation Composition

has-a relationship has-a relationship

e Existence of Part does not depend
on the existence of Whole.

e Lifetime of Part does not depend
on Whole.

e No single instance of whole is the
unique owner of Part (might be shared
with other instances of Whole).

e Part cannot exist without Whole.

e Lifetime of Part depends on Whole.

e One instance of Whole is the single
owner of Part.

9/5/18

9/5/18

Aggregation or Composition? Aggregation or Composition?

Composition Aggregation
| Room | | Customer I

21? ?|?

| Building I | Bank I Building

What about class and students or body and body parts?

UML class diagram: multiplicity UML class diagram: navigability

Navigability: not specified

Each A is associated with exactly one B
Each B is associated with exactly one A

| A I1<.2 I B I - Navigability: unidirectional -

“can reach B from A”

[~ I [5]

Navigability: bidirectional

Each A is associated with any number of Bs
Each B is associated with exactly one or two As

UML class diagram: example Summary: UML

e Unified notation for modeling OO systems.

o Allows different levels of abstraction.

e Suitable for design discussions and documentation.
e Generating code from diagrams is challenging.

