CS 520
In-Class 4
Formal Reasoning

Due: Thursday, November 29, 2018, 9:00 AM EDT via Moodle. This in-class exercise is a group
submission. This means that each group only needs to submit their solution once and also that every
student in a group will get the same grade. You will work with students within your group, but not with
students from other groups. Multiple groups’ submissions may not be created jointly. Late assignments will
not be accepted without prior permission.

Overview and goal

The high-level goal of this exercise is to learn to use theorem provers to reason about code and prove code
properties. The exercise will also teach how to generate test cases via formal reasoning with theorem provers.

What to do

Forming groups

1. Team up in groups of size 4. (If you cannot find a 4th member, raise your hand and ask the instructor.)

2. Create a new group on Moodle (see “In-class exercise 4: group selection”), and add all group members.

Background

Do you recall the Triangle program? You wrote tests for it the in-class 2 exercise and then used coverage and
mutation testing to evaluate your test suites. It was especially hard to write tests for several of the mutants, so
in this assignment, we will use formal reasoning to prove whether such tests could be written.

Specifically, we’ll look at two mutants (but first, one simpler program to get us started). We’ll write a
logical formula that describes the behavior of the relevant part of the original (not mutated) program, and
another logical formula that describes the behavior of the relevant part of the mutant. We’ll then use the
73 theorem prover to ask the question “Does an input exist such that the mutant and the original program
exhibit different behavior?” If it does, we’ll use what Z3 tells us to create a test case. The important thing to
remember is that, as we learned in in-class 2, writing tests that detect mutants can be difficult. Our goal today
is to use the Z3 theorem prover to do this difficult work for us.

The key to this assignment is using Z3. You can always refer to the Z3 tutorial: https://risedfun.com/
Z3/tutorial/guide if you need help using it. But we’ll start out here with information on how to use Z3.

What is 7.3?

Here’s an example Boolean formula:
(x1 Vx2) A (—x1 V)

It says “(x; or xp) and ((not xy) or x3)”. Let’s call that formula ¢. Given a Boolean formula ¢ without
quantifiers (just ands (M), ors (V), and nots (—)), we can assign its variables to Boolean values and ¢ will
evaluate to true or false. (We will write 1 for true and O for false.) For example, if x; =0 and x, =0,
then @ = (0V0) A (=0V0) = (0) A (1) = 0. What Z3 does is take a Boolean formula in a particular format

CS 520 Fall 2018. In-Class 4. Formal reasoning Page 1 of 6

https://moodle.umass.edu/course/view.php?id=49403
https://rise4fun.com/Z3/
https://rise4fun.com/Z3/
https://rise4fun.com/Z3/tutorial/guide
https://rise4fun.com/Z3/tutorial/guide
https://rise4fun.com/Z3/tutorial/guide

and compute whether there exists some assignment to the variables that makes the entire formula true. If
such an assignment exists, then we say the formula is satisfiable. If all assignments make our formula true,
we say that the formula is a tautology. If no assignment satisfies our formula then we say that our formula is
unsatisfiable. Note that if @ is a tautology, then we know that —@ is unsatisfiable. We’ll use this fact later.

The question “Is formula ¢ satisfiable?” turns out to be hard in general' but Z3 uses heuristics to solve
exactly this problem for us. The challenge in front of us is to encode the questions we care about into this
formulation Z3 can help us with.

73 allows users to not only ask questions about Boolean formulae but also about certain math equations
by introducing things like existential and universal quantification, numbers, and linear arithmetic (addition,
subtraction, multiplication, division, and ordering).

7.3 for Program Verification

So how can we use Z3 for program verification? Well, say we have a program P and a question about P. We
can encode the question and the relevant parts of the program into constraints. If we do it just right, Z3 can
tell us if the set of constraints is satisfiable and answer our question. To tell Z3 about a constraint we use an
assert statement.

Take, for example, a program

int P(int a, int b){
return a + b;

}

and let’s say the question we want answered is “Are there inputs such that P returns 07”

We would write Z3 constraints as follows: First, we declare a and b. We then assert that the return
value is O (to do this we can assert that a + b == 0). Then, we ask Z3 if this is satisfiable by running
(check-sat). To see what Z3 came up with, we use the command (get-model). Let’s try that. Go to
https://risedfun.com/Z3 and type in (without the line numbers):

(declare-const a Int)

(declare-const b Int)

(assert (= (+ a b) 0)) ; We want a + b to be 0
(

(

check-sat) ; Find out if this 1s satisfiable
get-model) ; It is, so let’s get a satisfying model

Z3 then returns

sat
(model
(define-fun b () Int
0)
(define-fun a () Int
0)

which tells us that when a=0 and b=0, the constraints are satisfied. Great, we just used Z3 to generate a test!

ISatisfiability is an NP-complete problem, meaning, among other things, that we only know how to solve it in time exponential in
the number of variables. If you haven’t yet, you’ll encounter NP-completeness in other classes, but you don’t have to worry about it
here.

CS 520 Fall 2018. In-Class 4. Formal reasoning Page 2 of 6

https://rise4fun.com/Z3

0}

Modeling Control Flow

Let’s deal with a more complicated program. Say we have the following Java method and we want to know if
it can ever return 3.

2> int doesStuff (int a, int b, int c){
if (¢ == 0) return 0;
if (c == 4) return O0;
if (a + b < ¢) return 1;
if (a + b > ¢) return 2;
if (a * b == ¢) return 3; // Does this ever happen??

return 4;
Z3 can do this for us, no problem! Here are the constraints® (we’ll explain what they do right after):

declare-const a JInt)
declare-const b JInt)
declare-const ¢ JInt)

(
(
(
(

(assert (not (= c #x00000000)))
(assert (not (= c #x00000004)))
(assert (not (bvslt (bvadd a b) c)))
(assert (not (bvsgt (bvadd a b) c)))
(assert (= (bvmul a b) c))

(check-sat)
(get-model)

So why does this ask Z3 if our method ever returns 3?7 Well returning 3 is equivalent to saying that none
of the other if statement conditionals were true but that the if-statement conditional a*b == c was true.
Thus we assertthat ¢ != 0,c != 4,thata + b > c,thata + b < c, and finally thata * b == c.

Cool, let’s see Z3’s answer:

sat
(model
(define-fun ¢ () (_ BitVec 32)
#x2da77000)
(define-fun a () (_ BitVec 32)
#x252cc8c0)
(define-fun b () (_ BitVec 32)
#x087aa740)

While this is technically a valid answer with Java ints, it is actually an overflow error. To verify this, try
the same Z3 script with all instances of JInts replaced with Ints (and replace the operators as well). This will
return unknown which means that Z3 can’t find an answer.

2These constraints use something called a bitvector (BitVec 32), which is an accurate way to define Java ints, as opposed to the
abstract concept of an integer. Don’t worry about what that means for now, it’s just another way to represent integers. If you’d like,
you can read about bitvectors here: https://rised4fun.com/Z3/tutorialcontent/guide#h25. But do note that with bitvectors,
operators such as + are replaced with bvadd, * with bvmul, < with bvslt, > with bvsgt, etc.

CS 520 Fall 2018. In-Class 4. Formal reasoning Page 3 of 6

define-sort JInt () (_ BitVec 32)) ; For convenience we alias the 32 bit vector

https://rise4fun.com/Z3/tutorialcontent/guide#h25

7.3 for Mutant Detection

OK, now let’s finally talk about mutation testing. What if we want to find out if two programs are equivalent?
Consider the following two programs.

int normal_sum(int a, int b){
return a + b;

}

int mutant_sum(int a, int b){
return a * b;

}

We want to know if these are equivalent; that means we want to know if they always produce the same
output on the same inputs. Let’s try to ask Z3 if they are the same:

(declare-const a Int)
(declare-const b Int)
3 (assert (= (+ a b) (* a b)))
(check-sat)
(

get-model)

Running Z3 we get

sat
(model
(define-fun b () Int
0)
(define-fun a () Int
0)

)

7.3 said sat??? But these are totally not the same programs! Oninputsa = 1, b = 1 they don’t produce
the same results!

Remember that Z3 tells us if there exists an assignment that satisfies the constraints. Here, it told us
that whena = 0, b = 0, these two programs produce the same answer. That’s all. It doesn’t tell us if the
constraints are always true.

So how do we ask Z3 that question? Well, recall that something is a tautology if and only if its negation is
unsatisfiable. We can use this fact. We can say that normal_sum is equivalent to mutant_sum if and only if
the following statement is t rue: “there does not exist an input on which their outputs differ.”” And we can
check this with Z3 by asserting that normal_sum is not equivalent to mutant _sum, and then asking Z3 is if
this is satisfiable. If it is, then we can separate these two programs and they are not equivalent; otherwise, if
this assertion is unsatisfiable, we can conclude that there is no input on which the two programs differ. Let’s
do that:

(declare-const a Int)

> (declare-const b Int)

, (assert (not (= (+ a b) (* a b))))
(check-sat)
(get-model)

which outputs

CS 520 Fall 2018. In-Class 4. Formal reasoning Page 4 of 6

S

ENA

sat

(model
(define-fun b () Int
(- 5))
(define-fun a () Int

(- 4))

Thus Z3 has found a test to show that the two programs are not equivalent.
As a final example, let’s see what happens when two mutants are the same. Consider the following two
methods

int normal (int a) {
if (a <= 0) return -1;
if (a > 0) return 1;

}

int mutant (int a) {
if (a <= 0) return -1;
if (a >»>= 0) return 1;

}

How can we model this with Z3 code? Well, we want to track the different possible return values for each
of the methods. We declare normal-returns-neg-1, normal-returns-pos-1, mutant-returns-neg-1,
and mutant-returns-pos-1. Then we can use assertions to add constraints to the system to model our
methods: (assert (= normal-returns-neg-1 (<= a 0))) tells Z3 that normal only return —1 if a <O0.

Here is our complete Z3 script:

(declare-const a Int) ; The input to be passed to both normal and mutant

Declare all
declare-const

possible returns

normal-returns-neg-1 bool

declare-const
declare-const
declare-const

(
(
(
(

Use asserts

normal-returns-pos-1
mutant-returns-neg-1
mutant-returns-pos-1

to constrain how

bool
bool

)
)
)
bool)

each return can be reached

(assert (= normal-returns-neg-1 (<= a 0)))
(assert (= mutant-returns-neg-1 (<= a 0)))
(assert (normal-returns-pos-1

(and (not normal-returns-neg-1)

(> a 0))))
(assert (= mutant-returns-pos-1
(and (not mutant-returns-neg-1)
(>=a 0))))
(assert (not (= normal-returns-neg-1 mutant-returns-neg-1)))
(assert (not (= normal-returns-pos-1 mutant-returns-pos-1)))

(check-sat)

2« ;; This yields

‘unsat’

CS 520 Fall 2018. In-Class 4. Formal reasoning

Page 5 of 6

Questions

You will be given three pairs of programs. Download them here:
http://people.cs.umass.edu/~brun/class/2018Fall/CS520/in-class4.programs.zip
For each pair, you’ll find three files:

1. A program (Sum. java or Triangle. java).
2. A mutant (Mutant . java). Note that javac won’t compile this class cause of the filename.

3. A starter script with helpful Z3 commands encoding constraints you’ll need (Z3startercode.pairN.smt2).
Look for the
iiiiiiiiiiiiiiiis START STUDENT CODE ;iiiiiiiiiiiiii
iiiiiiiiiiiiiiii; END STUDENT CODE ;iiiiiiiiiiiiii
tags for where to write your code. You won’t have to edit anything outside of these tags, except possibly
uncommenting the penultimate ; ; (get-model) line.

For each pair, your job is to determine if there exists a test that produces different outputs on the two
programs in the pair (and, if so, what that test is), or if the programs are equivalent (and thus no such test
exists). Start with Z3startercode.pairN.smt2 and fill in the space that’s labeled for you to fill in.

Deliverables

Your submission, via Moodle, must be a single (one per group) archive (.zip or .tar.gz) file with name
<group name>-inclass4.<zip/tar.gz>, containing:

1. Z3startercode.pairl.smt2
2. Z3startercode.pair2.smt2
3. Z3startercode.pair3.smt2

4. writeup.txt

Each of the . smt2 files should contain your Z3 code solution. Verify that pasting the entire file into the
73 interface produces the output you expect.

The writeup.txt file should contain, for each of the three pairs, an explanation of either how you know
the mutants are equivalent, or a test case that demonstrates that they are not equivalent.

CS 520 Fall 2018. In-Class 4. Formal reasoning Page 6 of 6

http://people.cs.umass.edu/~brun/class/2018Fall/CS520/in-class4.programs.zip
https://moodle.umass.edu/course/view.php?id=49403
https://rise4fun.com/Z3/

