
CS 520
In-class exercise 2
Software testing

Due: Thursday, October 25, 2018, 9:00 AM EDT via Moodle. This in-class exercise is a group
submission. This means that each group only needs to submit their solution once and also that every
student in a group will get the same grade. You will work with students within your group, but not with
students from other groups. Multiple groups’ submissions may not be created jointly. Late assignments will
not be accepted without prior permission.

Overview and goal

The high-level goal of this exercise is to learn how to systematically unit-test a program and how to assess
test quality, using code coverage and mutation analysis.

What to do?

Forming groups

1. Team up in groups of size 4. (If you cannot find a 4th member, raise your hand and ask the instructor.)

2. Create a new group on Moodle (see “In-class exercise 2: group selection”), and add all group members.

Set up

1. Make sure that you have Git (v2.7.4 or later) and Java installed.

Git: https://git-scm.com/

Java: http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

2. Clone the cs520 git repository:

git clone https://github.com/LASER-UMASS/cs520 inclass2

3. In a terminal, change into the triangle directory (inclass2/triangle).

4. Read the provided README.md file in that directory.

5. Test your set up by running ./test.sh

6. Familiarize yourself with the triangle program (src/triangle/Triangle.java).

7. Familiarize yourself with the example test suite (test/triangle/test/TriangleTest.java).

8. Run the code coverage analysis (./coverage.sh) and inspect the report it produces
(coverage results/index.html).

9. Run the mutation analysis (./mutation.sh) and inspect the set of killed mutants it reports
(mutation results/killed.csv).

CS 520 Fall 2018. In-class exercise 2. Software testing Page 1 of 3

https://moodle.umass.edu/course/view.php?id=49403
https://git-scm.com/
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html


Writing unit tests

Goal: Develop three (3) test suites that satisfy different (coverage) criteria.

1. Develop a test suite that satisfies a statement coverage criterion.

2. Develop a test suite that satisfies a condition coverage criterion.

3. Develop a test suite that is mutation adequate (i.e., detect all detectable mutants).

Take notes about how you approach each step; in steps 2 and 3, you may extend the test suite developed
in the previous step(s). Make sure to commit each test suite to your cloned repository with a proper commit
message.

Analyses

Goal: Interpret code coverage and mutation analysis results.

1. Determine the code coverage ratios and mutant detection rates for each of your three developed test
suites.

2. Delete all assertions from your test suites and repeat step 1.

Questions

Using your notes and results, answer the following questions:

1. Did your approach to writing unit tests differ between developing a coverage-adequate test suite and
developing a mutation-adequate test suite? Briefly explain why or why not.

2. Do your coverage-adequate test suites detect (i.e., kill) all detectable mutants? Do they cover all
mutants (i.e., cover the mutated code)? Briefly explain why or why not?

3. For any given program, why are some mutants not detectable?

4. Consider your mutation-adequate test suite and the triangle program. For each undetected mutant,
briefly explain why it is not detectable.

5. What changes in the code coverage ratios and mutant detection rates did you observe when deleting all
assertions?

6. Create a definition of “test case redundancy” based on code coverage or mutation analysis. Given your
definition of test case redundancy, are some of the test cases in your test suites redundant? Given your
definition of test case redundancy, would you remove redundant test cases? Briefly explain why or why
not.

CS 520 Fall 2018. In-class exercise 2. Software testing Page 2 of 3



Deliverables

Your submission, via Moodle, must be a single (one per group) archive (.zip or .tar.gz) file with name
<group name>-inclass2.<zip/tar.gz>, containing:

1. answers.txt: A plain-text file with your answers to the above 6 questions. List all group members on
top of this file.

2. inclass2: Your copy of the inclass2 repository, with your test suites committed. Note that this
should not be the files in the inclass2 working copy, but instead the repository (which is the .git
directory in inclass2.) For example, on a Linux-based machine (e.g., MacOS), you can use the
terminal from the inclass2 directory and run the command
tar -vczf inclass2.repo.tar.gz .git

CS 520 Fall 2018. In-class exercise 2. Software testing Page 3 of 3

https://moodle.umass.edu/course/view.php?id=49403

