
CS 520
Final project description

Final projects will be completed in teams of 4 or 5 students. Each team is responsible for a single project.
You should select a team and a project by Tuesday, October 9, 2018, 9:00AM EDT.
Your mid-point check-in will be on Tuesday, November 13, 2018, 9:00AM EST.
The final project will be due Tuesday, December 11, 2018, 11:55 PM EST.
There are five options for a final project (each team will do one):

1. MSR 2019 Mining Challenge

2. Replication study

3. Model Inference for Inferring Processes

4. EleNa: Elevation-based Navigation

5. Self-defined software engineering research project

MSR 2019 Mining Challenge

The Mining Software Repositories conference runs an annual challenge in which they provide a dataset and
ask you to answer research questions about the dataset. Read the description of this year’s dataset, research
questions, and challenge here:
https://2019.msrconf.org/track/msr-2019-Mining-Challenge#Call-for-Mining-Challenge-Papers

Replication study

A replication study takes an existing research paper, replicates its experiments on the same data, and then
extends the experiments to expanding that data set on which the experiments are run. For this project, we
highly recommend selecting a paper with publicly available dataset and code to execute the experiments. The
project involves a write up describing the process of replicating the experiments, deviations in the achieved
results from the original ones reported in the paper, and lessons learned from applying the experiments to
new data.

Here is a list of several papers that are good candidates for replication:

1. Automatic generation of oracles for exceptional behaviors from Javadoc comments.

Paper: https://dl.acm.org/citation.cfm?id=2931061

Source code: https://github.com/albertogoffi/toradocu

2. SimFix: Automated program repair

Paper: http://sei.pku.edu.cn/˜xiongyf04/papers/ISSTA18a.pdf

Source code: https://github.com/xgdsmileboy/SimFix

Dataset: https://github.com/rjust/defects4j

CS 520 Fall 2018. Final Project Page 1 of 4

https://2019.msrconf.org/track/msr-2019-Mining-Challenge#Call-for-Mining-Chall enge-Papers
https://dl.acm.org/citation.cfm?id=2931061
https://github.com/albertogoffi/toradocu
http://sei.pku.edu.cn/~xiongyf04/papers/ISSTA18a.pdf
https://github.com/xgdsmileboy/SimFix
https://github.com/rjust/defects4j


3. EvoSuite: Automated test generation

Paper: https://dl.acm.org/citation.cfm?id=2685612

Source code: http://www.evosuite.org/ and https://github.com/EvoSuite/evosuite

Dataset: https://github.com/rjust/defects4j

4. Are mutants a valid substitute for real faults in software testing?

Paper: https://homes.cs.washington.edu/˜mernst/pubs/mutation-effectiveness-fse2014.pdf

Source code and dataset: https://github.com/rjust/defects4j

Model Inference for Inferring Processes

The goal of this project is to learn how automated model inference works and its limitations, then to apply
it to real-world traces to infer models of real-world phenomena, and learn something interesting from the
resulting models.

What is model inference?
Model inference uses a set of observations of how a process executes to the produce a model of everything

the process can do. For example, imagine watching ten different people, each, bake a pie, and writing down
every step each of them takes. What you end up with is ten traces of executions of the pie baking process.
Feed these ten traces into a model inference tool, and it will produce a model of pie baking. The model has a
start state and an end state, and everything in between is some way of describing different possible traces.
Every trace through the model (from the start state to the end state) is a way to bake a pie. Typically (but
depending on the tool), this model will include the ten traces you already observed, but it may include others
as well. These others are generalizations of the observed traces.

Of course, model inference doesn’t just work for pie baking. The more typical approach is to execute a
software system many times and record logs of these executions. These logs (traces) could be something like
every method that executes, or it could be the logging information developers chose to put into the system.
Feeding these log traces into a model inference tool produces a model of possible system behavior, some
observed and some unobserved.

Tasks
Your task is to learn about model inference, select a reasonable way to generate traces, develop experi-

ments to evaluate a specific model inference tool (or several tools), use these model inference tools to infer
models, and finally, study the models and experiments.

1. Model inference.

Synoptic and InvariMint are two good tools to know about. Synoptic is relatively simpler, but InvariMint
allows running multiple inference algorithms at once. You can start here:

https://github.com/ModelInference/synoptic/blob/master/README.md

and also look at two research papers about the tools:

Synoptic: http://people.cs.umass.edu/˜brun/pubs/pubs/Beschastnikh11fse.pdf

InvariMint: http://people.cs.umass.edu/˜brun/pubs/pubs/Beschastnikh15tse.pdf

2. Generating traces.

Be creative. You can find real-world processes (like baking a pie) for which you can manually write
traces. Maybe you can write down plots of movies in a common (small vocabulary) language. Maybe
you can use a diary of daily behavior? Or you can find an interesting software system to generate logs.

CS 520 Fall 2018. Final Project Page 2 of 4

http://www.evosuite.org/
https://github.com/EvoSuite/evosuite
https://github.com/rjust/defects4j
https://homes.cs.washington.edu/~mernst/pubs/mutation-effectiveness-fse2014.pdf
https://github.com/rjust/defects4j
https://github.com/ModelInference/synoptic/blob/master/README.md
http://people.cs.umass.edu/~brun/pubs/pubs/Beschastnikh11fse.pdf
http://people.cs.umass.edu/~brun/pubs/pubs/Beschastnikh15tse.pdf


3. Experiments.

Lots of things can affect model inference. How many traces there are. How diverse the traces are.
How redundant the traces are. And then, there are the model inference tools themselves. Synoptic
(and InvariMint) use a set of invariants. Changing this set will affect the models you get. Design
experiments that change something about the traces or inference algorithms.

EleNa: Elevation-based Navigation

Navigation systems optimize for the shortest or fastest route. However, they do not consider elevation gain.
Let’s say you are hiking or biking from one location to another. You may want to literally go the extra mile if
that saves you a couple thousand feet in elevation gain. Likewise, you may want to maximize elevation gain
if you are looking for an intense yet time-constrained workout.

The high-level goal of this project is to develop a software system that determines, given a start and an
end location, a route that maximizes or minimizes elevation gain, while limiting the total distance between
the two locations to x% of the shortest path.

Components:
Your software system will most likely have four main components:

1. Data model that represents the geodata.

2. A component that populates the data model, querying, e.g., OpenStreetMap.

3. The actual routing algorithm that performs the multi-objective optimization.

4. A component that outputs or renders the computed route.

While all components are necessary for a working prototype, you may choose to focus on some of them
in greater detail. For example:

• If you focus on developing and experimenting with several routing algorithms, it is sufficient to have a
simple interface for entering the start and end location and a simple output that represents the route.

• If you focus on a sophisticated UI with proper rendering of the computed route, it is sufficient to have a
basic data model and routing algorithm.

Resources:

• The A? algorithm: https://en.wikipedia.org/wiki/A*_search_algorithm

• Dijkstra’s algorithm: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

• OpenStreetMap wiki: http://wiki.openstreetmap.org/wiki/Main_Page

• The following paper, in particular Section 2, provides a very accessible introduction and overview of
metaheuristic search algorithms:
https://pdfs.semanticscholar.org/9c83/752460cd1024985981d4acaa7bc85e15c0f7.pdf

CS 520 Fall 2018. Final Project Page 3 of 4

https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://wiki.openstreetmap.org/wiki/Main_Page
https://pdfs.semanticscholar.org/9c83/752460cd1024985981d4acaa7bc85e15c0f7.pdf


Self-defined software engineering research project

As the title suggests, this is an open-ended option for student groups who can define and execute their own
research project related to software engineering.

Finding a good research project requires reading research papers and thinking of an extension. You could
look at the papers published at the latest premier software engineering conferences, e.g.,

• ICSE 2018: https://www.icse2018.org/track/icse-2018-Technical-Papers#event-overview

• ESEC/FSE 2017: http://esec-fse17.uni-paderborn.de/program_research_track.php

• ICSE 2017: http://icse2017.gatech.edu/?q=technical-research-accepted

and either replicate one of those papers’ experiments on another dataset, or extend either a technique or the
evaluation described in a paper.

This project is appropriate for students already with some research experience.
If you want to see some sample research ideas, you can contact Yuriy via email.

CS 520 Fall 2018. Final Project Page 4 of 4

https://www.icse2018.org/track/icse-2018-Technical-Papers#event-overview
http://esec-fse17.uni-paderborn.de/program_research_track.php
http://icse2017.gatech.edu/?q=technical-research-accepted

