
Staged Program Repair
with Condition Synthesis
presenter name(s) removed for FERPA considerations

Paper by Fan Long and Martin Rinard

Program repair is time consuming!

Program repair is time consuming!

But maybe we can repair programs automatically.

Research Questions

● Can automatic program repair tools be designed in a way that
scales to
○ Real programs?
○ A variety of classes of real defects?

● Are there effective techniques for limiting the search space of
program repair to increase scalability? Is staged program repair
such a technique?

● Can techniques effectively prioritize certain plausible repairs to
reduce the amount of time required to find program repairs?

Staged Program Repair

Key Ideas for Staged Program Repair

● Uses a set of predetermined transformation schemas to
generate a search space that contains a large number of
useful repairs.

● Integrates transformation schemas with techniques for
condition synthesis to produce branching conditions for
proposed program repairs.

● Updates proposed repair schemas with synthesized
conditions to yield the final repaired program.

Example: An Absolute Value Function

int absolute_value(int x) {
 return -x;
 return x;
}

Positive Tests:
absolute_value(-3) == 3
absolute_value(0) == 0
absolute_value(-10) == 10

Negative Tests:
absolute_value(5) == 5

Above is an obviously bugged
implementation of absolute value in C.

To the right is a set of positive and
negative test cases for this program.

Applying a Transformation Schema

int absolute_value(int x) {
 return -x;
 return x;
}

int absolute_value(int x) {
 if (1 && !abstc) {
 return -x;
 }
 return x;
}

The transformation schema used here is called M-Guard.

Using Condition Synthesis

After condition synthesis:

int absolute_value(int x) {
 if (1 && !(x > 0)) {
 return -x;
 }
 return x;
}

As written by a developer:

int absolute_value(int x) {
 if (x <= 0) {
 return -x;
 }
 return x;
}

Would this have worked in GenProg?

● Maybe!
● Remember, GenProg

leverages template
solutions in existing code

● Without other code, no!

Program repaired with SPR:

int absolute_value(int x) {
 if (1 && !(x > 0)) {
 return -x;
 }
 return x;
}

Contributions

● A new method of resolving defects in a program by proposing a set of
repairs that are most-likely to work.

● A set of transformation schemas that generate a search space with many
useful repairs and integrate well with condition synthesis techniques.

● An algorithm for performing condition synthesis to efficiently search the
space of possible conditions for use in program repairs.

● Experimental results validating the effectiveness of the contributed
techniques for automatic program repair.

Evaluation

Evaluating Staged Program Repair

● 69 defects and 36 functionality changes (same benchmarks as GenProg)
● SPR is used for each defect/change

○ 12 hour time limit
○ Tested with and without a source code file

19
correct repairs from staged program repair.

Comparison with Existing Work

● Directly compare generated
repairs to existing tools.
○ GenProg
○ AE
○ PAR

● Evaluate performance
increase from condition
value search

Thank you!

Any Questions?

Discussion

Discussion

How does the author’s implementation
of staged program repair prioritize
between possible repairs to try?

Discussion

Can we integrate a better heuristic for
this process?

Discussion

Could staged program repair be
applied to other programs and
tests and get similar results?

Discussion

Could staged program repair
successfully employ different
techniques for condition synthesis?
What impact might this have?

Discussion

Is it a good idea to extend the search
space for staged program repair?

Thanks again!

