
CodeHint:
Dynamic and Interactive 
Synthesis of Code Snippets

presenter name(s) removed for FERPA considerations

Joel Galenson, Philip Reames, Ratislav Bodik, Björn Hartmann, Koushik Sen



Research Questions



Motivating Research Questions
1. How can users find code snippets using whatever partial 

information they have about the desired result?



Motivating Research Questions
1. How can users find code snippets using whatever partial 

information they have about the desired result?

2. Can a dynamic approach to code generation and completion be 
more useful than existing static methods?



Motivating Research Questions
1. How can users find code snippets using whatever partial 

information they have about the desired result?

2. Can a dynamic approach to code generation and completion be 
more useful than existing static methods?

3. How can the search procedure for candidate statements be 
improved?



Contributions



Contributions
A method for synthesizing code using:

Dynamic Analysis

Intuitive Specification Language

Interactive User Input



Contributions
An algorithm that can generate relevant code snippets based on 

user constraints and probabilistic model

Powerful enough to handle I/O, reflections, and native calls in 
the host language



Contributions
An implementation of preceding ideas in the form of an Eclipse 

plug-in, for Java code

Some empirical studies on the implementation’s effectiveness in 
real-world scenarios



Key Ideas



Key Ideas
● Programmer expresses their intuition about the result and the 

IDE synthesizes code fragments
● Most tools before CodeHint that help programmers find code 

fragments, rely on static information. They are inexpressive.
● Use Dynamic Analysis!
● Why is dynamic analysis better than static?



Key Ideas
● Take advantage of dynamic context information
● Example:

Dereferencing exactly the expressions that do not evaluate to 
NULL in the current context



Key Ideas
The Specification:

Programmer expresses their partial knowledge about the result 
using predicates called partial dynamic specification (PDSpec)

● Pdspecs can be a constraint on the desired value, type or any 
other property.

● example: x instanceof MenuBar



Algorithm
Given this specification, CodeHint will begin an iterative search for 
expressions that satisfy the pdspec.

● First Iteration:
● CodeHint queries the debugger, searches local variables and 

special values like this, null.



Algorithm
Second Iteration:

● CodeHint combines simple expressions into complicated ones according to the 
language grammar

● All accessible methods available on a type are queried.

● Try all combinations.

● Evaluations might have side effects, so CodeHint has to keep undoing them

● Uses Java's security manager to disable external side effects like deleting files.

● Equivalent expressions will be grouped to avoid duplication.



Algorithm
Third Iteration:

● Over 10 million Java LOC analysed, and a probabilistic model 
is developed that helps guide the search.

● The probabilistic model will guide the search towards the most 
likely ones.



Key Ideas
● User can give extra hints using Skeletons.

● Skeletons are normal code with holes representing unknowns.

● Example: MyObject.myMethod(??)
● ?? = missing portion



Explanatory Example



Objective: To remove ALL integers of a specified 
value, from a list.

void RemoveAllFromList(
List<Integer> ls,
int x){

// Code Required!
}



Objective: To remove ALL integers of a specified 
value, from a list.

void RemoveAllFromList(
List<Integer> ls,
int x){

// Code Required!
}

ls = [0 , 1 , 2]
x = 0

!ls.contains((Integer)0)

Sample
Input

PDSpec



Objective: To remove ALL integers of a specified 
value, from a list.

void RemoveAllFromList(
List<Integer> ls,
int x){

// Code Required!
}

ls = [0 , 1 , 2]
x = 0

!ls.contains((Integer)0)

Candidates

ls.remove(0)

ls.removeAll((Integer)x)

ls.remove((Integer)x)

ls.removeAll((Integer)0)

ls.clear()

Sample
Input

PDSpec



Objective: To remove ALL integers of a specified 
value, from a list.

void RemoveAllFromList(
List<Integer> ls,
int x){

// Code Required!
}

ls = [2 , 3 , 4 , 3]
x = 3

!ls.contains((Integer)3)

Candidates

ls.remove(0)

ls.removeAll((Integer)x)

ls.remove((Integer)x)

ls.removeAll((Integer)0)

ls.clear()

Sample
Input

PDSpec



Objective: To remove ALL integers of a specified 
value, from a list.

void RemoveAllFromList(
List<Integer> ls,
int x){

// Code Required!
}

ls = [2 , 3 , 4 , 3]
x = 3

!ls.contains((Integer)3)

Candidates

ls.remove(0)

ls.removeAll((Integer)x)

ls.remove((Integer)x)

ls.removeAll((Integer)0)

ls.clear()

Sample
Input

PDSpec



Evaluations



User Evaluation
I.e. How useful is it in practice?

Ability to complete task?

Task completion time?

Quality of code?

Tested using 28 people, divided into two groups which worked on 
same tasks, independent of each other.
One group used CodeHint, other group did not.



Results

Without CodeHint With CodeHint

Success Rate 27% 69%

Completion Time 92 s 46 s

Number of bugs 24 11

Statistically Significant Results!
CodeHint helps!

User Evaluation



I.e. Is the tool efficient?

Search time?

Is probabilistic model advantageous?

Performance Evaluation



Time needed to search & evaluate till various depths

Depth = 2 Depth = 3 Depth = 4

Average 0.5 s 1.3 s 5.3 s

Median 0.4 s 1.1 s 3.6 s

Performance Evaluation



Advantage of Probabilistic Model + Heuristics
(Measured by number of expressions evaluated till depth = 3)

Standard Without 
Heuristics Brute Force

Average 412.9 53769.2 44857654.2

Median 234 4457 115410

CodeHint is efficient!
The probabilistic model helps!

Performance Evaluation



Discussion Questions



Is it better to break up a CodeHint request into multiple 
intermediate steps, or to chain method calls into one single 
statement?

Discussion Questions



Discussion Questions
The developers used twenty-eight users to evaluate CodeHint’s 
effectiveness. Is this enough to achieve confidence in the result?



Discussion Questions
This implementation was done for Java. How could CodeHint’s 
methods work for other programming languages?



Discussion Questions
If a working codebase were used to train the probabilistic model 
instead of the original ten million line codebase, how could 
CodeHint’s functionality be affected?



Discussion Questions
How could CodeHint be used for debugging?


