Automatically Patching Errors in
Deployed Software

Authors - Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe,
Jonathan Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios

Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin Michael D. Ernst, and
Martin Rinard

presenter name(s) removed for FERPA considerations

Problem Definition

Possible Attacks

Buffer Overruns, lllegal Control Transfers, Other potential Incorrect Behavior

Standard Mitigation

Terminate the application (loss of data, error persists, restart overhead)

Alternative

Automatically Patch the application

ClearView

Protect against unknown
vulnerabilities

Preserve functionality

Do not modify source code
Do not require any
cooperation from
developers

Introduction

Usual behavior after software failure: DoS
What can we do if we want the application to be available in spite of failures?
Hint: invariants

Suggested solution: Force invariants.

Summarizing Clearview’'s Automatic

patching mechanism

e Learning

e Monitoring program execution

e Correlated Invariant

Identification

i
e Candidate Repair m Correlated 6&; Candidate ;ffff’ Candidate
Leaming - el of behavior | . enenl —elted T| . ePal o dale tepairs| . CPal
Generation \dentification | " | Generafion P | Evaluation
invariants
e Candidate Repair Figure 1: The ClearView Archifecture

Evaluation

An example of clearview working

@@ -1554,6 +1554,10 @@
if (wordLen > n) {
wordLen = n;
}
// WordLen should never be negative.
if (wordLen < 0)

wordLen = 0; - Patch generated

inWord = PR_FALSE;
if (isWhitespace) {

if ("\t' == bpl0]) {

+ + + +

Learning Invariants

Create a model consisting of invariants observed during normal execution.

How to obtain invariants? USE: Daikon

Procedure Control Graphs

Create a control flow graph. (Done by Determina
Program Execution Environment)
Determine values of variables within basic blocks.

Use those values to get invariants.

B1

w=0;
xX=x+ ¥;
y=0;
if(2 > 2)

B2

Yy = x;
x++;

ENTER

A 4

B3

Yy=2;
2++;

B4

w= X+ 2

Basic Blocks

B1
B2
B4

\\ B3
/

¥

EXIT

Flow Graph

Monitoring

Stack
growth

buff0]
Vulnerable Buffer

L bufln]

Canary Value

Return Address

0x0000

OXFFFF

Current Implementation uses
MemoryFirewall to detect illegal
ControlFlowTransfer errors and
it is always enabled.

HeapGuard monitor detects
OutOfBounds memory
accesses by placing canary
values at the boundaries of
allocated memory blocks.

HeapGuard

e HeapGuard encounters a canary value
o Searches an allocation map
m if address within bounds, normal execution
m else Out of Bounds write error.
e HeapGuard suffers no false positives
e HeapGuard can detect an earlier error than MemoryFirewall and hence
enhances ClearView's ability to find a successful patch earlier.
e HeapGuard can be turned on and off dynamically while the application
executes.

Example

int func(){
int pass = 0;
char buffer[15];

printf("\n Enter the password : \n");
gets(buffer);

Canary value _

if(strcmp(buffer, "password")){
printf ("\n Wrong Password \n");
}

elsef{
printf ("\n Correct Password \n");
pass = 1;
}
if(pass){
printf ("\n Root privileges granted \n");
}
}

Monitoring -
Shadow Stack Maintaining the shadow stack

Why?
On program failure (top-level exception):

e Various optimizations can
make it difficult to reliably
traverse a native call stack.
Errors such as buffer
overflows may corrupt the

native call stack and it

maybe unavailable to —ﬁ
—+s0

ClearView on a failure R — —ﬂ—ﬂ B — -

detection. Al: (I Ry 0 0 Al: _—

< L
. y \J%D
This can also be enabled or — -:—>[]

disabled when the application > - >0
A 5 pp R: 18 __)D R: 17 —Gﬂ

is running. 150 L S

0 >0

>

i Real stack Shadow stack]

Correlated Invariant Identification

Properties

e Always satisfied in normal executions but :
. . . AR ALY
violated in erroneous executions L2100 1113
e Violated before failure occurs 100 G,

-2 ok olal o
i A W

Rationale 521911110} .
L i =
3111010011042
e May correct the error “14911)

e Eliminate the failure
e Enable the application to operate
successfully

Candidate
Correlated
Invariants

Use Shadow stack

Or

Use instructions close to failure
location.

Three key considerations
1. Location of the failure
2. Sufficiently large invariant search space
3. Keeping the set tractable

How to limit the invariant set?

Values of two variables to be compared should be in the
instruction’s basic block.

Checking { A }
Candidate
Correlated [T]

Invariants / i
|

‘ Violated \

Single Variable Patches - Execute when the program counter
reaches the instruction associated with the variable.

{ Satisfied

Two Variable Patches - Execute when the program counter reaches
the second instruction.

Identifying
Correlated

Invariants

When a monitor detects a failure, ClearView
uses the sequences of invariant checking
observations to classify candidate
correlated invariants as follows:

e Highly Correlated

e Moderately Correlated

e Slightly Correlated

e Not Correlated

Candidate Repair Generation

Creates a set of candidates repair for each correlated invariant. After checking to see
if the invariant is violated, clearview patch will enforce the invariant by changing:

e Flow of control
e Values of registers
e Values of memory location

Candidate Repair Evaluation

After applying the patches, many of them might have negative or no effect on the
application.

To solve this issue, clearView observes the application as it executes and ranks each
patches based on whether them it observes any failure or crashes

At each point it applies the highest ranked patch in an attempt to minimize the
likelihood of a negative effect

Red Team Exercise

e DARPA hired ten engineers from Sparta Inc. to perform Red team exercise.

e 10 exploits in Firefox 1.0.0 (x86 binary) were used to design attacks.
Preparation for Red team exercise:

e Redteam has access to all materials generated by Blue team (they generated
source code, documentation, analyses of vulnerabilities.)
e Invariant database created by limiting learning to just areas of applications

related to vulnerabilities.

Results of Red team exercise

Clearview succeeded in detecting all exploits and preventing them.

But, Clearview produced successful patches only in 7 cases out of the 10 attacks.
Clearview was not affected by false positives.

Clearview successfully handled variants of attacks and mixed attacks.

3 Cases of failure:

e Misconfiguration of ClearView.
e Invariant obtained was not statistically significant.
e Daikon could not detect appropriate invariant.

Performance

Learning Overhead: -

Time required to load 12 learning webpages
Without learning enabled - 5.2 seconds
With learning enabled - 1600 seconds

(over a factor of 300 slower)

Patch Creation Time Breakdowns

ClearView took 4.9 minutes to generate a successful patch after an average of 5.4 executions.

Shadow Building Installing Building |Installing Successful
Bugzilla |Stack, Heap |Invariant |Invariant |Invariant Check |Repair Repair successtyl |Repair
Number |Guard Runs [Checks Checks |Runs Patches |Patches |Repair Runs\ |Runs Total
269095 25.31[12.67[1,0,1] 8.71|51.95(4/28) 10.95[1,0,0] 7.29|51.40(2) \ 345 202.77
*285595 25.38/12.18[0,5,0] 8.47|74.26(6/2216) 11.48[0,3,0] 8.7p |- 31.84| 1724
290162 27.14(9.76[2,0,0] 7.79|47.68(2/2) 10.92[1,0,0] sl - 32.64| 14433
295854 32.81(8.82[1,0,0] 9.2|66.29(2/0) 10.34[1,0,0] 8l131.11(1) 30.82| 206.49
296134 39.31(63.83[0,42,10] 5.89|279.05(3/?) 30.27[0,2 7] 6.13|- 50.22| 474.8
1307259 26.14(49.39[0,4,26] 4.45|1235.53(7444/29428) |39.66[0,1,6] 6.48|347.69(7) 1709.11
311710a 52|14.22[0,1,2] 9.19/151.29(60/1460) 11.34{0,1,0] 6.43/- 69.05| 313.92
311710b 60.48(13.5[0,1,2] 8.27|152.3(50/1460) 13.38[0,1,0] 5.4 57.6| 311.01
311710c 51.56(17.56[0,1,2] 8.38/161.44(60/1460) [16.17[0,1,0] 8.14|- 64.02| 327.29
312278 24.3|8.56[1,0,0] 7.22|48.49(2/0) 11.65[1,0,0] 8 / 33.29| 14151
320182 25.31|12.67[1,0,1] 8.71|51.95(4/28) 10.95[1,0,0] 7.28]30402) / 345 20277
*325403 24.21(16.93[0,0,2] 5.9/46.81(4/0) 10.57[0,0,2] 6.01- __/ 33.48| 143.91

A deployment of ClearView

Community machines

Server

(Server may be
replicated,
distributed, etc.)

Threat model does not (yet!)
include malicious nodes

Encrypted, authenticated

communication
<

[Mt

DI

)

Three sources of inefficiency: -

1. Warming up the Determina Managed Program Execution Environment
Code Cache

2. Using Windows Event Queues as the communication mechanism
between community members and the centralized servers

3. Compiling the invariant check and repair patches

Limitations:

ClearView is not to correct every conceivable error.

The goal is instead to correct a realistic class of errors to enable applications
with high availability requirements to successfully provide service in spite of

these errors.

However it might fail to repair the error or it might degrade the application

Discussion 1;

What do you think are the possible sources of inefficiency for ClearView
performance

Discussion 2:

What happens if another failure is triggered while ClearView is trying to repair a
failure?

Discussion 3:

It is possible for a ClearView repair patch to impair the functionality of the
application. The authors provide no formal method to check correctness other

than the fact that the software continues execution.

Discussion 4

The team has performed the experiment in a very controlled environment. How
scalable do you think is this to industry level environment.

Discussion 5:

The Red Team exercise was first performed on

Dell 2950 rack-mount machine

16 GB of RAM and two 2.3 GHz Intel Xeon processors, each with four processor cores.
Firefox was run inside VMware virtual machines under ESX servers.

Windows XP Service Pack 2

One exploit (Stack Overflow) did not trigger

But it worked on

1.8 GHz AMD

Opteron machine with four processor cores and 8 Gbytes of RAM

Windows XP Service Pack 2.

How generalized is ClearView?

Discussion 6:

How advantageous is Clearview ? Because industry applications are kept
available through redundancy, is clearview a proper alternative to redundant
resources?

Discussion 7:

Invariant detection and enforcement in Clearview is localized. How can it patch
when program use some global state?

References :

1.
2. http://www.thegeekstuff.com/2013/06/buffer-overflow/?utm_source=f
eedly

http://people.csail.mit.edu/zichaoqi/PatchAnalysis/ClearView.html
http://people.csail.mit.edu/zichaoqi/PatchAnalysis/ClearView.html

