
Angelix
PRESENTER NAME(S) REMOVED FOR FERPA CONSIDERATIONS



Research questions

u Can semantic analysis based bug fix method be 
scaled to repair large-scale real world programs?

u Previous semantic analysis repair methods 
(DirectFix): 
u promise in quality of repairs

u the scalability has been a concern



Research questions

u Can scalable semantic analysis based bug fix 
method be used to repair multi-location bugs? 

u Previous scalable methods applicable to single 
location bug fixes (SemFix).

u search-based repair method in GenProg
u can change multiple locations

u BUT the repair is often functionally equivalent to the 
single line modification.



Research questions

u How does the repairability and quality of 
synthesized patches compare to the repairability
and quality of patches found by search-based 
methods, such as SPR?

u Is the quality of synthesized patches comparable 
to the developer-provided patch?

u How often do functionality-deleting patches 
occur?
u SPR: frequent functionality-deleting patches



Contributions

u Angelic forest: 
u light-weight repair constraint representation

u program size independent semantic information

u Angelix:
u extension of semantic analysis based bug fix 

methods 

u both scalability and multi-location bug fixes

u lower rate of functionality-deleting bug fixes



Why Angelix?



Why Angelix?

u GenProg, SPR, SemiFix, DirectFix, 
are some good already existing 
repair programs.



Why Angelix?

u But, scalability of semantic based 
analysis has always been a 
concern.



So, How does it work ?



Consider the Following 
Buggy Code.



First,

u Add if conditionals before each 
unguarded assignment statement.



First,



Second,

u The repair algorithm replaces user 
configured n most “suspicious 
expressions” with symbolic 
variables.



Second,



Second,

User can configure the number and 
kinds of expressions that can be 
converted to symbols.



Lastly,

u Algorithm proceeds to run symbolic 
execution over the program we 
obtained above with provided tests 
to collect the semantic information 
necessary to synthesize a solution.



Lastly,



Wait, what does that 
mean ?



Wait, what does that 
mean ?

u First, the program tries to detect if 
there exists some “path” through 
which the given tests pass.

u If no such path exists then we make 
the next n suspicious expressions 
“symbolic” and repeat step 1.

u If such a path exists, solve for values of 
symbols.

u And lastly, the program state needs to 
be known.



Semantic Signature of 
Our example.



Patch Synthesis

u Angelic forest serves as input for repair synthesizer
u Repair follows one of the paths in AF for each test
u Each repaired expression returns angelic value
u CBRS:

u Program = circuit of components (variables, 
constants, operators)

u Original program + components + specification (AF) 
à connect components (satisfy specification, 
minimize difference from the original)



Patch Synthesis

u ! 𝑥 𝑒$ = 2 ∧ 𝑦 𝑒$ = 1 ∧ 𝑒$ = 𝑇𝑟𝑢𝑒 ∧ (𝑥 𝑒. = 2 ∧ 𝑦 𝑒. = 2 ∧
𝑒. = 𝐹𝑎𝑙𝑠𝑒)4 ∨ 𝑥 𝑒$ = 1 ∧ 𝑦 𝑒$ = 2 ∧ 𝑒$ = 𝐹𝑎𝑙𝑠𝑒



Patch Synthesis

u Solve constrains using MaxSMT solver
u Minimal patch:

u Easier to validate

u Less likely to change the correct behavior

u Multiple suspicious expressions – fault localization 
(which expressions to modify + how to modify)



The Test

u Competitors: GenProg, AE, SPR
u Test Subjects: Wireshark (2814 Kloc), PHP (1046 

KLoC), Gzip, gmp, libtiff (Software selected from 
GenProg Evaluation)
u Some more multi-line defects from CoREBench



The Evaluation

u Were the tools able to synthesize 
patches that were functionally 
equivalent to the Developer-
provided patches?



The Results

u What does this mean?



Angelix VS. SPR

u Repairability:
u Higher in one

u Lower in another

u The same in remaining three

u Uniqueness:
u Angelix produced more

unique repairs than any

other tool.
u Multi-line fixes



Correctness of Patch

u Angelix maintains the functionality of the code 
more than any other tool out there.

u Percentage of functionality-deleting repairs:
u SPR overall: 42%

u Angelix: 21%

u Other tools similarly high



Concerns (Future Work)

u While Angelix was proven, still some weaknesses 
to consider
u Still unable to create perfectly functionally 

equivalent patches to developer.
u Result of fixes outside of its defect scope, e.g. creating 

a new variable, function call.

u Angelix developers wish for further research in this 
area to improve the tool



Conclusion

u Angelix, while not completely perfect, was proven 
to be effective against leading state-of-the-art 
software at
u Implementing repairs in large-scale subjects and in 

multi-location defects

u Create repairs that other tools cannot due to its 
unique patch creation technique

u Low rate of function-deleting patches to maintain 
patch and code quality

u Was able to create a functionally-equivalent patch to 
fix the HeartBleed vulnerability.



Some Questions:

u What types of bugs or defects does Angelix seem 
best equipped to fix?



Some Questions:

u Do you believe the Angelic Forest conceptual 
model is the right direction to pursue with 
synthesized patching? Could another approach 
be potentially more effective?



Some Questions:

u The Angelix Forest seems to be a powerful tool for 
determining an effective solution from a multitude 
of choices given the structure of local data. Can 
the Angelic Forest model have other potential 
applications in other fields?



Some Questions:

u When checking whether the test subject defects 
were within Angelix’ defect class, the developers 
discounted any developer-provided patches that 
were outside the scope of Angelix’ defect class. 
Do you think this is a good idea? Should they 
have still evaluated Angelix against patches that 
seem to be outside of Angelix’ apparent scope?



Some Questions:

u The paper makes a note of how Angelix was able 
to patch the Heartbleed bug. However, this is the 
only bug used as evidence of Angelix’ ability to 
patch such vulnerabilities. What other types of 
vulnerabilities could be tested to better enforce 
this claim?



Thank You


