
Program Boosting: Program
Synthesis via Crowd-Sourcing

Cochran, Robert A., et al.

presenter name(s) removed for FERPA considerations

What is a regular expression (regex)?
● A regular expression

defines a pattern that
strings must match

● What would a regex for
phone numbers look
like?

and

becomes

^[0-9]{3}-[0-9]{3}-[0-9]{4}$

A regular expression for phone numbers with
hyphens!

Ans1: ^[0-9]{3}-[0-9]*-[0-9]{4}$?

Ans2: ^[0-9]{3}-[0-9]{3}-[0-9]*$?

“A regex for phone numbers?”
● Was “^[0-9]{3}-[0-9]{3}-[0-9]{4}$” also your answer in mind?

● What about no hyphens? With spaces?
Country code? Which country?
Any extensions?

People think differently!

Observation: People think differently!
● It might be due to ambiguity in task specification
● Or they just consider different cases, cover different bases

● Simple task can be really challenging!

Research Questions

● Can crowd-sourcing improve solution accuracy on difficult
programming tasks, by synthesizing over individual
programmers’ inaccurate solutions?
○ Task such as coming up with a regular expression to

recognize email addresses, URLs, phone numbers, and dates

Key Idea: Crowdsourcing and Two-Crowds
● While people may get different parts wrong, blending these

partially incorrect programs may provide better solutions

● Experts/Developers and non-professional crowd each can
contribute different aspects to a task in the program
boosting process

Example:
Regex for URL
- Bountify

Positive

Negaitive

Example: Regex for URL
- From experts
(Crowd #1)

Representation:
Symbolic Finite Automata (SFA)
● Extension of classical finite state

automata to represent regexes

● Allow transitions to be labeled with
predicates
○ Needed to handle UTF-16

(216 characters)

http://pages.cs.wisc.edu/~loris/papers/popl15crowdboost.pptx

Program Boosting: System Architecture

Crowd #2
Non-professional

Crowd #1
Expert/ Developers

Crowd #1

Program Boosting: Iterative Genetic Programming
Golden

examples

Perfect
or

budget
= 0?

Crowd-
Sourced

initial
programs Customized operations

Crossovers Mutations Crowd #2
Consensus

Fitness

Updated
programs
& updated
examples

Program
with best
fitness

Y

N

Fitness Scoring

A = Examples a program considered positive

P = Positive examples

N = Negative examples

How well does a program perform on a given data set?

The dashed region is where the program
is considered correct.

Initial Condition

Experiment Evaluation

Boosting Process
● Tested on 465 genetic programmed regexes
● Limited the boosting iteration to 10 for each regex
● Generated 0-207 test strings from each regex

Sources

Tasks

Results

Significant improvement on already high quality initial input.

Average
16.25%
accuracy
boost

The more
comprehensive test
set for final
evaluation

Time and Cost
Time
● Main time cost is the classification latency from Mechanical Turk
● Between the four test categories, the averages ranged from 4 minutes to 37 minutes

Monetary Cost:

● Bountify: $5-$10 per question for total 4 questions
● Mechanical Turk: average $0.41-$3 per regex for 465 regexes

● Program Boosting
Method for semi-automatic program synthesis by blending
a set of initial crowd-sourced programs

● CROWDBOOST
Tool for generations of complex regular expressions
○ First to adopt symbolic setting with genetic programming

using Symbolic Finite Automata (SFAs)
■ Supports complex alphabets such as UTF-16

Contributions

Discussions Q1

Any other possible applications?
Other than Regex?

Discussions Q2

Money:
How do we compensate the programmers?

What if we can’t afford to pay them?

Discussions Q3

When to stop collecting answers?
How confident are you that the majority is correct?

Discussions Q4

How to counteract overfitting to the data?

Discussions Q5

There may be slow response times from the crowd.
How can this be fixed?

References
● Cochran, Robert A., et al. "Program boosting: Program synthesis via crowd-sourcing." 42nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pp.
677-688, Mumbai, India, 2015.

● Information Flocking Applied to Genetic Programming Visualization, slides
● In search of the perfect URL validation regex https://mathiasbynens.be/demo/url-regex
● Perini, Diego. “Regex-weburl.js.” GitHub. N.p., 5 Dec. 2010. Web. 01 Mar. 2017.
● Program Boosting: Program Synthesis via Crowd-Sourcing, POPL ‘15, slides
● Veanes, Margus. "Applications of symbolic finite automata." International Conference on

Implementation and Application of Automata. Springer Berlin Heidelberg, 2013.
● Weimer, Westley, et al. "Automatically finding patches using genetic programming." Proceedings of

the 31st International Conference on Software Engineering. IEEE Computer Society, 2009.

http://www.slideshare.net/matthieumacret/g-pviz
https://mathiasbynens.be/demo/url-regex
http://pages.cs.wisc.edu/~loris/papers/popl15crowdboost.pptx

Thank You!

Example: Twitter Example for Regex

●
●
●
●
● URL validation challenge from Mathias Bynens, Dec. 10

https://mathiasbynens.be/demo/url-regex

Genectic Programming Operation: Crossover
● Redirecting Edges
● Collapsing Stretches
● One-way Crossovers

Genectic Programming Operation: Mutation

Diminishing mutationsAugmenting mutations

http://pages.cs.wisc.edu/~loris/papers/popl15crowdboost.pptx

Example:
Regex for URL

var re_weburl = new RegExp(

 "^" +

 "(?:(?:https?|ftp)://)" +

 "(?:\\S+(?::\\S*)?@)?" +

 "(?:" +

 "(?!(?:10|127)(?:\\.\\d{1,3}){3})" +

 "(?!(?:169\\.254|192\\.168)(?:\\.\\d{1,3}){2})" +

 "(?!172\\.(?:1[6-9]|2\\d|3[0-1])(?:\\.\\d{1,3}){2})" +

 "(?:[1-9]\\d?|1\\d\\d|2[01]\\d|22[0-3])" +

 "(?:\\.(?:1?\\d{1,2}|2[0-4]\\d|25[0-5])){2}" +

 "(?:\\.(?:[1-9]\\d?|1\\d\\d|2[0-4]\\d|25[0-4]))" +

 "|" +

 "(?:(?:[a-z\\u00a1-\\uffff0-9]-*)*[a-z\\u00a1-\\uffff0-9]+)" +

 "(?:\\.(?:[a-z\\u00a1-\\uffff0-9]-*)*[a-z\\u00a1-\\uffff0-9]+)*" +

 "(?:\\.(?:[a-z\\u00a1-\\uffff]{2,}))" +

 "\\.?" +

 ")" +

 "(?::\\d{2,5})?" +

 "(?:[/?#]\\S*)?" +

 "$", "i"

);

