Automatic Recovery from
Runtime Failures

presenter name(s) removed for FERPA considerations

Key Idea

e Use automatic recovery tools to generate alternative ways to achieve the same
functionality of code that can potentially fail

e |dentify potential areas for failure from library calls

e Create semantically equivalent functions using different library calls

e Employ tool to avoid failures at run-time

Study Questions

e s automatic recovery effective in making applications more resilient to faults?
e Are the techniques efficient enough to be practically usable?
e Is modular software to some significant extent intrinsically redundant?

Why?

Their argument: Modern software is intrinsically redundant
Redundancy is an intrinsic property of modular software
Implementations tend to be semantically equivalent

Use of libraries

o Backwards compatible functionality equivalence
o Cross-library semantic equivalence
o Functional equivalence for different use cases (based on input)

e The pointis to find operations equivalent in intended behavior, but not in
actual observable behavior

Equivalence of Tested Libraries

TABLE I
EQUIVALENT SEQUENCES FOUND IN REPRESENTATIVE JAVA LIBRARIES
Library Guava | SWT | JodaTime
Classes considered 116 232 12
Total equivalences found 1715 1494 135
Average per class 14.78 383 11.25

How it Works - ARMOR

e Preprocessor identifies Roll-Back Areas (RBAS)
o Static Analysis
Calls to the library that could be re-written
May result in Failure but minimal
Supports nested RBAs
Creates checkpoints before RBAs
Method bodies / singular field initialization expression (encapsulated as a method)

e Rewrites RBAs and compiles them
e FEach new solution wrapped in a loop based on passing checkpoints

e On failure loop iterates to next available solution for implementation
o Based on past success

e Rolls back to last checkpoint if notified of failure
e Runs until failure-free or runs out of solutions

o O O O O

Example: JodaTime

// failing operation
DateTime beginDay = dt.millisOfDay().withMinimumValue();

// workaround 1
DateTime beginDay = dt.toDateMidnight().toDate Time();

// workaround 2
DateTime beginDay = dt.withTimeAtStartOfDay();

NN B W=

Listing 2. Workarounds for issue n. 3304757 of JodaTime

class CurrentMidnight {
DateTimeZone tz = DateTimeZone.forlD("America/Sao_Paulo”);
DateTime midnight;

Lad D

public void initDayAndZone(){
DateTimeZone.setDefault(tz);
DateTime dt = new DateTime();

setMidnight(dt):

S WD 00 =1 O Ln

—

12| private void setMidnight(DateTime dt){
13 midnight = dt. millisOfDay (). withMinimumValue();
14| }

16| public DateTime getMidnight(){
17 return midnight;

18| }

19|}

21| class Main {

22| public static void main(String args[]){
23
24 CurrentMidnight cm = new CurrentMidnight();
25 cm.initDayAndZone();

26
27 cm.getMidnight();
28

29| }

30|}

Listing 3. Example application code

class CurrentMidnight {

1

2| DateTimeZone tz = tz_jnit();

3| public DateTimeZone tz_init_original() {

4 return DateTimeZone forlD{"AmericalSan_Paula™);
s|)

6| public DateTimeZone tz_init() {

7|y {

8 create_checkpoint();

9 return tz_init_original ():

10 } catch (Exception ex) {

1 while (more_rba_variants_available) {
12 {

13 restore_checkpoint();

14 load_new_rba_variant();

|5 return tz_init_original ()

16 } cateh (Exception ex1) {

17 # record variant failure and adjust priorities
[

19 b

1)

4| throw ex;

L) } finally {

3 discard_checkpaint();

W}

5|)

6| DateTime midnight;

)

18| & initDayAndZone proxy method not shown
9

10| public void setMidnight_original(DateTime dt) {
3| midnight = dt. millisOfDay (). withMinimumValue();

§2

i3 ;}wblic void setMidnight(Date Time dt) {

M| try {

i5 create_checkpoint();

6 setMidnight_ orugma.h:dt]

i7 } catch (Exception ex) {

i boolean success = false:

9 while (!success && more_rba_variants_available) {
0 try {

H restore_checkpoint();

12 load_new_rba_variant();

i3 satMldmghLonglnal{ dt);

M success = true;

I5 } catch (Exception ex1) {

16 # record variant failure and adjust priorities
¥

18 }

]

i if (!success)throw ex;

it) finally {
2 discard_checknoint(}:

The Experiment

e Libraries used
o JodaTime: Library of utility functions to represent and manipulate dates and time.
o Guava: The Google “core” library for collections, I/0, caching, concurrency, string processing,
etc.

e Application Software
o Fb2pdf: A command-line utility to convert files from the FB2 e-book format into PDF. Fb2pdf
uses the Java date/time library but they changed it to use the fully compatible JodaTime library.
o Carrot2:A search results clustering engine. Carrot2 uses the Guava library.
o Caliper:A framework for writing, running and viewing the results of Java microbenchmarks.
Caliper uses the Guava library.
o Closure:A source-to-source optimizing JavaScript compiler. Closure uses the Guava library

Experiment cont.

e Formulated code re-writing rules and ran ARMOR preprocessor

TABLE 11
RESULTS OF THE PREPROCESSING ON THE SELECTED APPLICATIONS
Application Caliper | Carrot2 | Closure | Fb2pdf
Total RBAs 130 139 2099 17

RBAs with variants 60 106 687 1/

Experiment cont.

e Conducted a more extensive evaluation using seeded faults with both libraries
and all four applications

e Ran mutation generation on all programs

e Used Daikon to get invariants

o Used invariants that worked in the original code but failed in RBAs in mutated code
o Added these as assertions in RBA

Results

TABLE III
MUTATION ANALYSIS AND EFFECTIVENESS OF ARMOR

Caliper Carrot2 Closure Fb2pdf

Total mutants 21297 21297 21297 16858

Relevant mutants 309 187 344 2200

equivalent 210 120 177 1805

E success o ouivalent detected 0 2 0 0

= q not detected 0 8 3

§ i detected 0 1 0 0

g | P not detected 12 9 5 a7

error 87 47 149 M7

Total mutants run with ARMOR 87 50 149 47

Mutants where ARMOR is successful (28%) 24 | (48%) 24 | (47%) 70 | (19%) 67

TABLE IV
OVERHEAD INCURRED BY ARMOR IN NORMAL NON-FAILING EXECUTIONS (MEDIAN OVER 10 RUNS)
Caliper Carrot2 Closure Fb2pdf

Original total running time 30.13 243 5.40 2.26
Time Exception-handling only (no checkpoints) (19%) 30.41 (69%) 4.13 (95%) 10.53 (068%) 3.79
(seconds) | Snapshot-based checkpoints (5%) 31.78 | (117%) 5.32 =>1h | (121%) 4.99
Change-log-based checkpoints (29) 30.87 (94%) 475 | (194%) 15.90 | (114%) 4.70
M Original total memory allocated 1.40 8.87 30.56 17.90
(MB) 4 Snapshot-based checkpoints 12.30 23,78 — 90.94
Change-log-based checkpoints 10.18 11.37 120.58 2503
Number of recorded checkpoints (approx.) 30 2,350 1.255.000 4
Values saved in change-log-based checkpoints (approx.) 26.000 270,000 1.880.000 9.000

Results cont.

e Fb2pdf had the smallest amount of RBAs, largest amount of mutants affecting
execution, and lowest success rate
o Applications with calls to the library that make up a larger portion of the library code

e Carrot2 had failed for one fault
o Library call within a library code
o High overhead with regard to checkpoint stack

e Overall, author asserts that the program results are positive
e |n the future, to solve more issues deep in library code / test on different
libraries

What’s New?

e Others have exploited redundancy
o Requires additional code
o Cabral - requires written exception handlers
o Chang - manually write patches
o Harmanci - code alternative code blocks
e Is different, as it exploits redundancy already available in libraries
o Less design cost

e General purpose
e Designed to work on deployed applications
o Prevent mistakes at run-time
e The notion of intrinsic redundancy in modern software applications

Discussion

1. Could this be potentially dangerous if implemented for a live system built on
several nested library dependency?

2. Isthe overhead worth it?

3. As library redundancy increases, will this process become more and more
expensive?

4. Worth it for smaller / newer libraries / lower-level code?

5. Can we use this process to replace non-library code with semantically
equivalent syntax?

