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Introduction.



Contributions.
• A novel invariant based approach for fault localization.
• A novel heuristic for reducing false positives in the 

diagnosis results. 
• Evaluate their approach against a set of applications 

much bigger and more realistic than most previous 
work. 

• Results show that their approach is effective at reducing 
root causes in large programs. Also, each step of 
filtering is important in the reduction of the set.



Key Idea.
• Invariants that are “similar” to training inputs are 

more effective than other types of invariants 
generated.

• Sophisticated filtering techniques allow us to start 
with a large number of suspected bug locations and 
lets us narrow it down to a much smaller number of 
locations.



Approach



Provided Example

Fails on inputs with (year=0, month<=2 ).

A buffer overflow occurs at Line 31 when 
type_names is indexed with weekday, a 
negative value on said failed input.

A brief explanation...



Provided Example

Fails on inputs with (year=0, month<=2).

year is of type uint, and when decremented 
from value ‘0’, becomes the maximum 
unsigned value (2^b - 1) do to modular 
wraparound...



Provided Example

Fails on inputs with (year=0, month<=2 ).

...so temp becomes huge...



Provided Example

Fails on inputs with (year=0, month<=2 ).

...and calc_daynr returns a very negative 
value...



Provided Example

Fails on inputs with (year=0, month<=2 ).

...and this negative value carries through to 
the index of type_names, causing the buffer 
overflow.



Provided Example

Fails on inputs with (year=0, month<=2 ).

The buffer overflow occurs at Line 31 but the 
root cause is at Line 10.ROOT CAUSE

CRASH



How does it work? User Input

The system needs to be provided:
(1) A program
(2) A specification for valid inputs (tokenizer 
or lexical analyzer) 
(3) A set of failing “bad” inputs that expose the 
bug in the program



How does it work? Phase 1 and Phase 2

Phase 1 generates a large set of “candidate” 
root causes. The approach minimizes false-
negatives but gets a lot of false-positives.
Phase 2 uses sophisticated filtering to cut 
down on the many false-positives.

Why? It is important not to miss a root cause 
from the very beginning.



How does it work? Generating Inputs

Based on what the user provided, a set of 
passing “good” inputs that do not expose the 
bug in the program is generated.

The “good” inputs are generated to be 
lexicographically close to the failing inputs. 

“Bad” (year=0, month=2)
“Good” (year=1, month=3)



How does it work? Generating Likely Invariants

The provided program is executed with the 
“good” inputs that were just generated, and a 
set of “narrow” range invariants is derived. 

year is  >= 0
month is  in the range [0,+12]
calc_daynr returns >= 0
calc_weekday returns >= 0

The invariant sets are limited to load, store, 
and function return values.



How does it work? Testing “Bad” Inputs 

“Bad” traces are evaluated for violated range 
invariants.

In the example earlier, the range invariant 
(year is  >= 0) is violated for the provided 
bad inputs. 

However, there are also 94 other invariants 
that were violated. These need to be filtered!



How does it work? Dynamic Backwards Slicing

DBS takes as input the buggy statement.
i.e. Line 31 type_names[weekday]

DBS then uses data flow and control flow to 
find invariant statements in the execution that 
affected the buggy statement.

These form the Dynamic Backward Slice. All 
the rest are filtered out!



How does it work? Dependence Filtering

Evaluates the data flow and control 
dependence graphs to filter out any 
statements with violated invariants that 
depend on another statement with violated 
invariants.

The candidate calc_weekday is dependent 
on another candidate calc_weekday.



How does it work? Multiple Faulty Input Filtering

All of the filtering steps so far have been 
working on information gathered from single 
“bad” input run.

Taking the DBS and Dependence filtered 
candidate sets of ALL the “bad” input runs, 
any candidates not common between all sets is 
filtered out.

The resulting candidate set is reported to the 
user!



Experiment

Tested on Squid, MySQL, Apache
Three Programs -> Eight Bugs
Constraints



Difficulty In Diagnosis



Results of Filtering False Positives

Dynamic Backward Slicing pares 80% of input false positive candidates
Dependence Filter pares 58% of input false positive candidates
Multiple Faulty Input Filter effectively pares none



Limitations

Limited to range invariants

System design may not be efficient if expanded to 
accommodate more invariants

Needs more robust input generation scheme



Conclusion

So what?
More robust algorithms
Less false positives
More bugs identified



Discussion
• The tool only considers loads, stores, and function 

returns for invariants (range invariants). It worked 
fine for the example bug, but how useful is this to 
developers in general?



Discussion
• Restriction to only range invariants was essential to 

the design of the system. Would expanding the 
invariants of interest be efficient?



Discussion
• The system is designed to primarily avoid missing 

possible candidates of root cause and secondarily 
reduce false positives. Would this still be a smart 
design choice if the invariant choices were 
expanded?



Discussion
• Is the experimental methodology sound?



Discussion
• The execution time for this tool was not reliable for 

the 8 test cases used in the authors’ experiment, 
ranging from 8 minutes to 4 hours depending on the 
program size and trace size. Would execution time 
scale well if more invariants were considered?
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