
Using Likely Invariants for
Automated Software Fault

Localization

Research by Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve
Department of Computer Science at UIUC

presenter name(s) removed for FERPA considerations

Introduction.

Contributions.
• A novel invariant based approach for fault localization.
• A novel heuristic for reducing false positives in the

diagnosis results.
• Evaluate their approach against a set of applications

much bigger and more realistic than most previous
work.

• Results show that their approach is effective at reducing
root causes in large programs. Also, each step of
filtering is important in the reduction of the set.

Key Idea.
• Invariants that are “similar” to training inputs are

more effective than other types of invariants
generated.

• Sophisticated filtering techniques allow us to start
with a large number of suspected bug locations and
lets us narrow it down to a much smaller number of
locations.

Approach

Provided Example

Fails on inputs with (year=0, month<=2).

A buffer overflow occurs at Line 31 when
type_names is indexed with weekday, a
negative value on said failed input.

A brief explanation...

Provided Example

Fails on inputs with (year=0, month<=2).

year is of type uint, and when decremented
from value ‘0’, becomes the maximum
unsigned value (2^b - 1) do to modular
wraparound...

Provided Example

Fails on inputs with (year=0, month<=2).

...so temp becomes huge...

Provided Example

Fails on inputs with (year=0, month<=2).

...and calc_daynr returns a very negative
value...

Provided Example

Fails on inputs with (year=0, month<=2).

...and this negative value carries through to
the index of type_names, causing the buffer
overflow.

Provided Example

Fails on inputs with (year=0, month<=2).

The buffer overflow occurs at Line 31 but the
root cause is at Line 10.ROOT CAUSE

CRASH

How does it work? User Input

The system needs to be provided:
(1) A program
(2) A specification for valid inputs (tokenizer
or lexical analyzer)
(3) A set of failing “bad” inputs that expose the
bug in the program

How does it work? Phase 1 and Phase 2

Phase 1 generates a large set of “candidate”
root causes. The approach minimizes false-
negatives but gets a lot of false-positives.
Phase 2 uses sophisticated filtering to cut
down on the many false-positives.

Why? It is important not to miss a root cause
from the very beginning.

How does it work? Generating Inputs

Based on what the user provided, a set of
passing “good” inputs that do not expose the
bug in the program is generated.

The “good” inputs are generated to be
lexicographically close to the failing inputs.

“Bad” (year=0, month=2)
“Good” (year=1, month=3)

How does it work? Generating Likely Invariants

The provided program is executed with the
“good” inputs that were just generated, and a
set of “narrow” range invariants is derived.

year is >= 0
month is in the range [0,+12]
calc_daynr returns >= 0
calc_weekday returns >= 0

The invariant sets are limited to load, store,
and function return values.

How does it work? Testing “Bad” Inputs

“Bad” traces are evaluated for violated range
invariants.

In the example earlier, the range invariant
(year is >= 0) is violated for the provided
bad inputs.

However, there are also 94 other invariants
that were violated. These need to be filtered!

How does it work? Dynamic Backwards Slicing

DBS takes as input the buggy statement.
i.e. Line 31 type_names[weekday]

DBS then uses data flow and control flow to
find invariant statements in the execution that
affected the buggy statement.

These form the Dynamic Backward Slice. All
the rest are filtered out!

How does it work? Dependence Filtering

Evaluates the data flow and control
dependence graphs to filter out any
statements with violated invariants that
depend on another statement with violated
invariants.

The candidate calc_weekday is dependent
on another candidate calc_weekday.

How does it work? Multiple Faulty Input Filtering

All of the filtering steps so far have been
working on information gathered from single
“bad” input run.

Taking the DBS and Dependence filtered
candidate sets of ALL the “bad” input runs,
any candidates not common between all sets is
filtered out.

The resulting candidate set is reported to the
user!

Experiment

Tested on Squid, MySQL, Apache
Three Programs -> Eight Bugs
Constraints

Difficulty In Diagnosis

Results of Filtering False Positives

Dynamic Backward Slicing pares 80% of input false positive candidates
Dependence Filter pares 58% of input false positive candidates
Multiple Faulty Input Filter effectively pares none

Limitations

Limited to range invariants

System design may not be efficient if expanded to
accommodate more invariants

Needs more robust input generation scheme

Conclusion

So what?
More robust algorithms
Less false positives
More bugs identified

Discussion
• The tool only considers loads, stores, and function

returns for invariants (range invariants). It worked
fine for the example bug, but how useful is this to
developers in general?

Discussion
• Restriction to only range invariants was essential to

the design of the system. Would expanding the
invariants of interest be efficient?

Discussion
• The system is designed to primarily avoid missing

possible candidates of root cause and secondarily
reduce false positives. Would this still be a smart
design choice if the invariant choices were
expanded?

Discussion
• Is the experimental methodology sound?

Discussion
• The execution time for this tool was not reliable for

the 8 test cases used in the authors’ experiment,
ranging from 8 minutes to 4 hours depending on the
program size and trace size. Would execution time
scale well if more invariants were considered?

References

Sahoo, S. K., Criswell, J., Geigle, C., & Adve, V. (2013). Using likely invariants for
automated software fault localization. Proceedings of the eighteenth international
conference on Architectural support for programming languages and operating
systems - ASPLOS '13. doi:10.1145/2451116.2451131

