Refactoring with Synthesis

Veselin Raychev - Max Schafer -Manu Sridharan - Martin Vechev

presenter name(s) removed for FERPA considerations

Introduction

Code Refactoring - Norm vs Available tools

Code refactoring is the process of improving the structure of existing code without
changing its external behavior

For the most part refactoring is done by hand by developers

However modern IDEs like Eclipse and IntelliJ IDEA for OO languages all provide
a large number of built-in refactorings that can be activated through a menu item.

J ' & eclipse

Intellij]IDEA

Why do developers still refactor by hand?

Developers still prefer to refactor by hand because:

e The refactorings provided by IDEs require developers to memorize names
and meanings

e They are hard-coded, restrictive and inflexible

e \Worst of all, they are slow and time consuming

Alt+F1

HT1 Find Usages Ale+F7 BRI
e iR
1 Format Alt+Shift+F
Fix Imports Ckrl4+-Shift+1
ale+Insert Safe Delete. .,
— —hange Method Parame i
Run Filz Shift+Fe Pull Up...
Debug File Ckrl4-Shift+FS Push Down. ..
Extract Inkerface...
e h ch... Ckrl+Shift+F7 Extract Super
e Toggle Line Breakpoint Chrl+-Fia Use Superty
T PSP W Prafiling

Inkroduce Yariable, ..

public

Introduce Conskant, ..
Paste Chel+Y Inkroduce Field. ..

Introduce Method. ..
Code Falds

Converk Anonymous to Inner

RESYNTH

Veselin Raychev - Max Schafer -Manu Sridharan - Martin Vechev

Report by Timothy Addai, Thanh Pham, Kevin Silva

Contribution

% RESYNTH

A new approach to refactoring that simplifies automated refactoring to a 3-step
process

% The programmer indicates the start of a code refactoring phase.
% Then she performs some of the code changes manually
% Then she asks RESYNTH to complete the refactoring

RESYNTH Approach - A Quick Overview

e RESYNTH first extracts the difference between the modified program and the
original program

e [t then synthesizes the sequence of refactorings that achieves the desired
code changes

e In order to be scalable,RESYNTH discovers a refactoring sequence within a
small section of code and then extrapolates it into a full refactoring sequences

An Example

Account {
e String name;

d primtOwing) {
printBanner () ;
System.out .println("name: " + name);

System.out .println("outstanding: " +
getOutstanding()) ;

getOutstanding () {

void printBanmner () {

Example of a complicated refactoring that cannot be achieved in a single step in current ID

unt {
private String name;

void printOwing() {
printBanmer () ;
printDetails(getOutstanding ()) ;

private void printDetails(double outstanding) {
System.out.println{"name: " + name);

System.out.println("amount: " + ocutstanding);

getOutstanding() {

void printBanner() {

hanges highlighted.

The Default Eclipse IDE Approach

e Eclipse will first use EXTRACT method on line 6 and 7 below to create printDetails()

private void printDetails() {
System.out .println("name: " + name);

=3
=
=]
=3
=
=]

System.out .println("name: " + name) ;

Syetem.out .printIn("cutstanding: " +
getOutstanding()) ;

-"!

ystem.out.println("outstanding: " +

getOutstanding ()) ;

e Then the developer would have to

use the INTRODUCE PARAMETER call

to create the final result shown here private veid printDetails(double outstanding) {

System.out.println("name: " + name);

System.out .println("amount: " + outstanding);

What's wrong with the Eclipse Approach?

e The INTRODUCE PARAMETER call would have to be invoked by the
developer but this feature is not well known by developers

e A case study by Abadi et al. showed that the EXTRACT METHOD of Eclipse
worked automatically only 3 out of 13 times.

RESYNTH - A better approach

Three simple steps

e Programmer hits start on RESYNTH interface
e The programmer would then simply replace lines 6 and 7 with
printDetails(getOutstanding)

System.out.println("name: " + name);

6 printDetails(getQutstanding)
System.out.println("outstanding: " + 7

getOutstanding());

RESYNTH - A better approach

e Then the programmer will hit the complete refactor button which will let
RESYNTH come up with the printDetails(getOutstanding) method shown
below.

private veoid printDetails(double outstanding) {

System.out .println("name: " + name) ;

Syetem.out .println("amount: " + outstanding) ;

Research Questions

e Can RESYNTH successfully perform individual refactorings?

e Will RESYNTH be able to synthesize complex refactoring sequences required
for real-world complex code base?

e How would programmers feel about synthesis-based refactoring using
RESYNTH?

Key Ideas

The sequences of refactoring

The process of Resynth

0. Initial Input 1. Extract Change 2. Synthesize Local 3. Extrapolate to a Sequence
Refactoring Sequence r;l of Full Refactorings r"

Figure 2. Synthesis Steps

Initial Input

0. Initial Input 1. Extract Change 2. Synthesize Local _ 3. Extrapolate to a Sequence
Refactoring Sequence r:.i' of Full Refactorings r™

Figure 2. Synthesis Steps

e Initial Program Pi
e Modified Program Pm

Extract Change

0. Initial Input 1. Extract Change 2. Synthesize local 3. Extrapolate to a Sequence
Refactoring Sequence r‘f’ of Full Refactorings

Figure 2. Synthesis Steps

Different pair (Ci, Cm) ?
Abstract Syntax Tree (AST) as a extract function T()

e Ciis a subtree of T(Pi)
e Cmis a subtree of T(Pm)

Example of AST

Pi=x*xy+7

ASTof x *y+ 7 ASTof fil+ 7
Pm=f()+7

Figure. 3. Two ASTs and the change (ci,cm) between them. The
change 15 captured with dotted lines.

Synthesize
Local Refactoring
S e q u e n Ce 0. Initial Input 1. Extract Change 2. Svnthe.:ize Local 3. BExtra P:at“- to a Sequence

Refactoring Sequence r;]' of Full Refactorings r"

Figure 2. Synthesis Steps

e Discover sequence refactoring
e A* search iteratively computes a distance function d from the initial tree Ci to

every other generated tree.
e the search space grows exponentially in the length of desired sequence, that

is not effective to use

Extrapolate to
Sequence

—b
Cf T

0. Initial Input 1. Extract Change 2. Synthesize Local 3. Extrapolate to a Sequence
Refactoring Sequence r;l' bf Full Refactorings r™

Figure 2. Synthesis Steps

e Obtain a sequence of full refactorings Pf

e If the sequence of full refactorings is infeasible, searches for a different local
sequence refractoring and repeats the process.

e Otherwise, obtain the desired program Pf

Specific example

3. perform the sequence (rename T 1o P) on the full proscam

Pi : .Pﬂ; : P_f :
float T, 5; float T, 5; float p, 5;
T = (a+b+c)/2 0. imitial input: user does partial rename " T = (atb+c) /2 P= (a+b+c)/2

s=T#(T-a)*(T-b)*(T-c); s=p#(p-a)=(T-b)*(T-c); s =p#*(p-a)=(p-b) *(p-c) ;
return Math.sqrt (8) ; return Math.sqrt (s) ; retwrn Math. sqrt (s) ;

l]. compute e; = P\ P, = ¢; T B and Em = P \ B

G © ¢ by Lemma 3.3

Cf : . Cm .
=T#(T-)=# 2. synthesize sequence: local rename T o P =p# (p-) #

Figure 5. Example of synthesizing a refactoring sequence. Initially (stage 0), the user performs part of the rename (the user
change is highlighted in both programs). Then ¢; and c,,, are computed (stage 1). Then, a sequence of one local rename is
discovered (stage 2). Finally, the rename is applied to the full program (stage 3).

Evaluation

Evaluation

These are some of the evaluation that was done:

e Individual Refactoring
e Refactoring Sequences
e Real-world and Synthetic Benchmarks

e User Study

Evaluation

RESYNTH can successfully execute individuals refactorings when given the
following edits:

Rename

Inline Local

Inline Method

Extract Local

Extract Method with Holes

Evaluation

Refactoring Sequences

e In order for RESYNTH to use the refactoring sequences it has to include a

successor function.

e Successors functions takes the current state of the program and produces a
finite state of possibles successors states applying refactoring methods

e Since our trees are immutable data structures, it produces a new tree every
time, which are added to the search space

Evaluation

Sample of refactoring sequence

Example

ENCAPSULATE DOWNCAST . literature [6]
EXTRACT METHOD (advanced) 4 literature [6]
DEcOMPOSE CONDITIONAL literature [6]
INTRODUCE FOREIGN METHOD z literature [6]
REPLACE TEMP WITH QUERY . literature [6]
REPLACE PARAMETER WITH METHOD | 3 literature [6]
SwaAP FIELDS . literature [32]
SwAP FIELD AND PARAMETER literature [25]
INTRODUCE PARAMETER Stack Overflow”

Table 1. Realistic examples used to test RESYNTH.

Evaluation Rest | Symiet

Avg. number of tees scarched

Avp_number of successors in a scarch

Aw g search time 1

Aw g Eclipse refactoring time

Refactoring sequence length
| refactoring

Real-world and Synthetic Benchmarks

e 9 real-world examples

5

o 7 correct refactoring 2 refactorings
. 3 refactorings T
o 2 equwalent 4 refactorings 3
e 100 random synthetics edits 5 refactorings 3
0 refacionngs F.
o 84% was solved T refactorings
o 16 fail (A* would need to explore more than S
nF . . : OTIAZS
20000 trees until it could find a refactoring Failure to find sequence
Sequence) after 20000 searched frees

Table 2 Results for our refactoring sequence search. The
A* heuristic function weights (see Section 3.4) were a; =
0.125 and a; = 0.25.

Evaluation

User Study

e Small group of participants (6 elements) with different level of expertise with
between 1 and 5 years of java programming experience.

e J3task
o RESYNTH
o Eclipse’s built in refactoring methods
o Manual editing

Evaluation

Results

e Only 2 were able to find that for task 3 the solution was not quite the expected

solution
e 4 found that it is a useful tool
e 1 did not trust the program for a more complex code

Conclusion

RESYNTH is easier to use than the default refactoring tools provided by
IDEs because it automates a significant portion of refactoring. However
more work needs to done to ensure that RESYNTH works effectively in a

complex code base.

Discussion

Discussion Question

RESYNTH is currently being embedded in IDEs like Eclipse.

Do you think a refactoring feature like RESYNTH could be embedded in a
language’s compiler so that in can be used outside an IDE and be able to work in
a terminal instead?

Discussion Question

Do you think RESYNTH can be used in a complex code base that consists of
multiple languages?

Discussion Question

What happen if initial program Pi and modified Pm are not
different?

Discussion Question

Why RESYNTH choose to use A* search for synthesizing local
refactoring instead of Breadth First Search?

Discussion Question

As a programmer, do you usually use refactoring methods or do
you do it by hand? Why?

Discussion Question

If they choose to take out the start refactoring button, what
could be another way for RESYNTH to know that code needs to
be refactor?

