
“Modular and Verified Automatic
Program Repairs”

from Francesco Logozzo and Thomas Ball at Microsoft
Research, Redmond

presenter name(s) removed for FERPA considerations

Introduction
Your programs will have bugs!

...and it would be useful to catch these bugs before running your program.

There exist automatic design time programs that report bugs to the developer.
...but they do not automatically provide the repairs for those bugs.

Wouldn’t it be easier if code repairs were automatically suggested to you as you
write buggy code?

Research Questions
How do we verify a satisfactory code repair?

Can code repairs be generated for every type of bug found?

Are the code repairs being suggested fast enough to be useful in an active
development use case?

The Approach
During design time, automatically suggest code repairs that address bug warnings
reported by static analyzers at design time.

Repairs need to be “verified” for correctness
Framework needs to be “modular” and work off of different static analyzers
No program runs or test-suites
Works on incomplete code

Contributions
Defined the notion of a “verified” repair.

Proposed sound algorithms for suggesting verified code repairs that address bugs
at design time.

Evaluated implementation to be accurate and fast enough for use in IDE.

System Diagram
Design Time

Developer Code

Static
Analyzer

Modular
Verified
Repair

Warnings

Accept/Decline
Repair

We already
know what

this is...

System Diagram
Design Time

Developer Code

Static
Analyzer

Modular
Verified
Repair

Warnings

Accept/Decline
Repair

These are
already used

in practice

cccheck: a static analyzer
Static analysis that will automatically detect buggy code during design time.
(No program runs or test suite needed)

-Missing contracts
-Incorrect locals
-Incorrect object initialization
-Wrong conditionals
-Buffer overruns
-Arithmetic overflows
-Incorrect floating point comparisons

System Diagram
Design Time

Developer Code

Static
Analyzer

Modular
Verified
Repair

Warnings

Accept/Decline
Repair

Will
extending
cccheck to

include
repair work?

Trace Semantics

“Traces are a sequence of states…”

Runs

What it means to be a good or bad run

Verified Program Repair

What makes a repair a “good” repair?

Repair should mean greater good runs and fewer bad runs.

Verified Assertion Repair

Abstracting what verified repair means

How can you determine an improved assertion?

System Diagram
Design Time

Developer Code

Static
Analyzer

Modular
Verified
Repair

Warnings

Accept/Decline
Repair

Program Repairs from a Static Analyzer
So does the repair program actually work with a static analyzer?

(1) “cccheck” does not require program runs and does not require test-suites.

(2) By construction, any verified code repair will not break your code (assuming
that your assertions are defined correctly).

(3) The verified code repairs are design-time suggestions, and are not applied
unless the developer approves it.

(4) Authors claim the repair program can be generalized for ALL static analyzers.

cccheck: Static Analysis Phases (part 1/2)
(1) Gather assertions

- Provided as the developer codes
- Can also be inferred by language semantics

(2) Infer facts
- Abstract interpretation in the abstract domains of heap abstraction, null

checks, scalable numerical analysis, universally and existentially quantified
properties, and floating point comparisons

cccheck: Static Analysis Phases (part 2/2)
(3) Prove assertions

- Four possible outcomes:
1. True, the assertion holds for all executions that reach it
2. False, the assertion does not hold for all executions that reach it
3. Bottom, the assertion is not reached in any execution
4. Top, the assertion holds only sometimes or the analysis is imprecise

(4) Report warnings and suggest repairs
- Rank the warnings based on severity

Forwards and Backwards Analysis
Verified repairs are property specific.

Verified repairs are inferred by the process of either:
(1) Backwards must analysis: to specifically provide repairs involving new

contracts, initializations, and guards
(2) Forwards may analysis: to specifically provide repairs involving off-by-one,

floating point exceptions, and arithmetic overflows

Backwards analysis
Backwards analysis is treated as a function which computes the
under-approximation of semantics by computing fixed points at loops.

Begin with a known failing assertion and analyze backwards until a point where
the preconditions for the failing assertion do not hold.

Specifically provide repairs for failing assertions with properties involving new
contracts, initializations, and guards.

Seeing how it works: Repair by contract

Seeing how it works: Repair by contract

Seeing how it works: Repair by contract

Seeing how it works: Repair by contract

Seeing how it works: Repair by contract

Seeing how it works: Initialization fixes (1)

Seeing how it works: Initialization fixes (2)

Seeing how it works: Initialization fixes (3)

Not reached ever!

Seeing how it works: Initialization fixes (3)

Not reached ever!

Change to (c != null)

Seeing how it works: Repairing object initialize

(this.s != null) should be true
always.

As else:
x = new MyClass();
x.Foo();

fails invariably.

Seeing how it works: Repairing object initialize

this.s is private hence can’t
be made precondition of foo.
It should be established
during creation

Seeing how it works: Repairing object initialize

either initialize this.s to a
non-null value in MyClass()
or add an object invariant
to avoid the null
dereference of s in Foo.

Forwards analysis
Forwards analysis evaluates repairs using the semantic facts inferred by abstract
domains.

Specifically provide repairs for failing assertions with properties involving
off-by-one, floating point exceptions, and arithmetic overflows

Seeing how it works: Repairing off-by-one

Seeing how it works: Repairing floating-point

Comparing against
constants. Repair with
typecast:
((double)d0 != 0.0)

Seeing how it works: Repairing arithmetic overflow

Forward analysis on arithmetic overflows is defined over a set of rules.

Seeing how it works: Repairing arithmetic overflow (1)

This can overflow!
Repair by replacing
with half sums:
inf + (sup - inf) / 2

Seeing how it works: Repairing arithmetic overflow (1)

Fix using: count > dest.Length - destIndex

Seeing how it works: Repairing arithmetic overflow (2)

Evaluation

80.9% of assertion warnings reported by cccheck had at least one verified repair suggested.

Time spent generating repairs is very small relative to time spent generating warnings.

On integration with Visual Studio, the program analyzed:
6+ methods/second and infers 7.5 repairs/second
10x faster with cccheck caching

Conclusion
The authors produced a design time solution for automatic suggestion of verified
program repair.

-The program to be repaired does not need to be run (or even complete)
-Developer does not need to provide a test suite
-The strict definition of verified repair implies correctness for all suggestions
-Repairs are local and can handle loops/infinite states
-Can be used as an extension of static analyzers with little added overhead
-Full functionality operates with reasonable speed and completeness

Discussion 1

What kind of bugs can we fix using this?

Discussion 2

Does it actually bridge the gap between static
analyzers and dynamic analyzer?

Discussion 3

Can it repair automatically?

Discussion 4

The program requires a set of regular
expressions to capture arithmetic errors. Can this

be exhaustive?

Discussion 5

What else can be added to this to make it more
robust and user independent?

References
Logozzo, F., & Ball, T. (2012). Modular and verified automatic program repair.
Proceedings of the ACM international conference on Object oriented programming
systems languages and applications - OOPSLA '12.
doi:10.1145/2384616.2384626

