*“Modular and Verified Automatic
Program Repairs”

from Francesco Logozzo and Thomas Ball at Microsoft
Research, Redmond

presenter name(s) removed for FERPA considerations

Introduction

Your programs will have bugs!
...and it would be useful to catch these bugs before running your program.

There exist automatic design time programs that report bugs to the developer.
...but they do not automatically provide the repairs for those bugs.

Wouldn't it be easier if code repairs were automatically suggested to you as you
write buggy code?

Research Questions

How do we verify a satisfactory code repair?
Can code repairs be generated for every type of bug found?

Are the code repairs being suggested fast enough to be useful in an active
development use case?

The Approach

During design time, automatically suggest code repairs that address bug warnings
reported by static analyzers at design time.

Repairs need to be “verified” for correctness

Framework needs to be “modular” and work off of different static analyzers
No program runs or test-suites

Works on incomplete code

Contributions

Defined the notion of a “verified” repair.

Proposed sound algorithms for suggesting verified code repairs that address bugs
at design time.

Evaluated implementation to be accurate and fast enough for use in IDE.

System Diagram

Design Time

Developer

Modular
Verified
Repair

Accept/Decline
Repair

Warnings

Static
Analyzer

We already
know what
this is...

System Diagram

Design Time

Developer

Modular
Verified
Repair

Accept/Decline
Repair

Warnings

Static
Analyzer

These are
already used
in practice

cccheck: a static analyzer

Static analysis that will automatically detect buggy code during design time.
(No program runs or test suite needed)

-Missing contracts

-Incorrect locals

-Incorrect object initialization

-Wrong conditionals

-Buffer overruns

-Arithmetic overflows

-Incorrect floating point comparisons

System Diagram

Will
extending
cccheck to

include
repair work?

Design Time

Developer

Modular
Verified
Repair

Accept/Decline
Repair

Warnings

Static
Analyzer

Trace Semantics

“Traces are a sequence of states...”
Runs

What it means to be a good or bad run

Verified Program Repair

What makes a repair a “good” repair?

Repair should mean greater good runs and fewer bad runs.

Verified Assertion Repair

Abstracting what verified repair means

How can you determine an improved assertion?

System Diagram

Design Time

Developer

Modular

Verified
Repair

Accept/Decline
Repair

Warnings

Static
Analyzer

Program Repairs from a Static Analyzer

So does the repair program actually work with a static analyzer?
(1) “cccheck” does not require program runs and does not require test-suites.

(2) By construction, any verified code repair will not break your code (assuming
that your assertions are defined correctly).

(3) The verified code repairs are design-time suggestions, and are not applied
unless the developer approves it.

(4) Authors claim the repair program can be generalized for ALL static analyzers.

cccheck: Static Analysis Phases (part 1/2)

(1) Gather assertions
- Provided as the developer codes
- Can also be inferred by language semantics

(2) Infer facts
- Abstract interpretation in the abstract domains of heap abstraction, null
checks, scalable numerical analysis, universally and existentially quantified
properties, and floating point comparisons

cccheck: Static Analysis Phases (part 2/2)

(3) Prove assertions
- Four possible outcomes:
1. True, the assertion holds for all executions that reach it
2. False, the assertion does not hold for all executions that reach it
3. Bottom, the assertion is not reached in any execution
4. Top, the assertion holds only sometimes or the analysis is imprecise
(4) Report warnings and suggest repairs
- Rank the warnings based on severity

Forwards and Backwards Analysis
Verified repairs are property specific.

Verified repairs are inferred by the process of either:

(1) Backwards must analysis: to specifically provide repairs involving new
contracts, initializations, and guards

(2) Forwards may analysis: to specifically provide repairs involving off-by-one,
floating point exceptions, and arithmetic overflows

Backwards analysis

Backwards analysis is treated as a function which computes the
under-approximation of semantics by computing fixed points at loops.

Begin with a known failing assertion and analyze backwards until a point where
the preconditions for the failing assertion do not hold.

Specifically provide repairs for failing assertions with properties involving new
contracts, initializations, and guards.

Seeing how it works: Repair by contract

int[] ContractRepairs(int index)

{
var length = GetALength(); // (1)
var arr = new int[length];
arr [index] = 9876;
return arr;

}

Assertions: 0 < index and index < arr.Length

Seeing how it works: Repair by contract

int[] ContractRepairs(int index)
{
var length = GetALength(); // (1)
var arr = new int[length];
arr [index] = 9876;
return arr;

}

Assertionsl: 0< indexland index < arr.Length

Seeing how it works: Repair by contract

int[] ContractRepairs(int index)
{
var length = GetALength(); // (1)
var arr = new int[length];
arr [index] = 9876;
return arr;

}

Bentry (0 < index) = 0 <
index is suggested as
precondition.

It is necessary as else
Assertionsl: 0< indexland index < arr.Length underflow shall occur.
Itisn’t sufficient (array in
bounds isn’t ensured)

Seeing how it works: Repair by contract

int[] ContractRepairs(int index)
{
var length = GetALength(); // (1)
var arr = new int[length];
arr [index] = 9876;
return arr;

}

Assertions: 0 < index anclindex <arr. Lengthl

Seeing how it works: Repair by contract

int[] ContractRepairs(int index)

{
var length = GetALength(); // (1)
var arr = new int[length];
arr [index] = 9876;

return arr; :
} Bentry (index <

arr.Length) = True but
B, (index < arr.Length) =

index < length must be
Assertions: 0 < index anclindex <arr. Lengthl true for GetAlLength.

Repair: Contract.Assume
(index < length)

Seeing how it works: Initialization fixes (1)

void P(int[] a) void P’ (int[] a)
4 {

Contract.Requires(a != null);

for Qvar i = 0; i < a.Length; i++) for (var i = 1; i < a.Length; i++)
ali - 1] 110: ali - 1] 110;
+

* Necessarycondition1 < i, buti = 0. So suggestfixasi = 1.

Seeing how it works: Initialization fixes (2)

string GetString(string key)
{
var str = GetString(key, null);
if (str == null)
{
var args = new object[1];
key; // (%)
throw new ApplicationException(args);
¥
return str;

}

* Inferred necessary condition: 1 < args. Length
* Suggested repair: new object [2]

Seeing how it works: Initialization fixes (3)

void ValidateOwnerDrawRegions (
ComboBox ¢, Rectangle updateRegionBox)

£
if (¢ == null)

{
Ivar r = new Rectangle(0, 0, c.Width); // (*)]
// use T and c -
3
¥

Not reached ever!

Seeing how it works: Initialization fixes (3)

Change to (c != null)

void ValidateOwnerDrawRegions (
ComboBox c, Rectangle u €RegionBox)

{
if Ko ==-null)}

{
Ivar r = new Rectangle(0, 0, c.Width); // (*)]
// use T and c -
3
¥

Not reached ever!

Seeing how it works: Repairing object initialize

public class MyClass
{

private readonly SomeObj s;

public MyClass(SomeObj s)

. {
(thIS.S I= nU”) should be true Contract.Requires(s != null);

always.

this.s = s;

¥

As else:
x = new MyClass(); I{Nlbllc MyClass ()

X.Foo(); }
fails invariably.

public int Foo()
i

return this.s.f;

7 -

Seeing how it works: Repairing object initialize

public class MyClass
{

private readonly SomeObj s;

publidg MyClass(SomeObj s)
{

Contract.Requires(s != null);

this.s = s;

¥

this.s is private hence can’t
be made precondition of foo. publye MyClass()
It should be established .

during creation

}

public int Foo()
i

return this.s.f;

7 -

Seeing how it works: Repairing object initialize

public class MyClass
{

private readonly SomeObj s;

publidg MyClass(SomeObj s)
{

Contract.Requires(s !'= null);

this.s = s;

either initialize this.s to a d

non-null value in MyClass() publye MyClass()
or add an object invariant i
to avoid the null

dereference of s in Foo. f{’UbliC int Foo()

return this.s.f;

Forwards analysis

Forwards analysis evaluates repairs using the semantic facts inferred by abstract
domains.

Specifically provide repairs for failing assertions with properties involving
off-by-one, floating point exceptions, and arithmetic overflows

Seeing how it works: Repairing off-by-one

string GetString(string key)
{

var str = GetString(key, null);

if (str == null)

{

var args = new object[1];
EanEcaAll

throw new ApplicationException(args);
+

return str;

¥

Infer: 1 < args. Length = 1, so suggest 0 as the new index.

Seeing how it works: Repairing floating-point

class FloatingPoint

{
double d;

[ContractInvariantMethod]
void ObjectInvariant()
y

Contract.Invariant (this.d !=

I

public void Set(double dO
{
i ve extended double precision
if §(do0 !'= 0.0)
this.d = d0; // dO can be truncated to 0.0
+
}

Comparing against
constants. Repair with
typecast:

((double)d0 !=0.0)

Seeing how it works: Repairing arithmetic overflow

k? — k! v — v
ok(ajopas) op € {+,—}
(ajopal)? — (ajopal)'
ok(-as)

((a] +2a5)?00)? — (aj ¢ -a})'

(a} 0ab)? — (a} o a))’

((a] —a5)"00)? = (aj o ap)'
k#0A (a## MinInt Vk # —1)
(@' /7 = (a'/kY)!

a +b /2 _a!)’.’/z!)!)!)!
Ol(—b)
((a‘—%b!)?oc!)’-’_>(a!<>(c!—b!)!)‘
ok(a-c)
((a!—|—b’)?—c’)7—>((a!—c’)’+b’)'~’
(

c
ok(a+b)

(' =)'+ — ((a' +b')! = c!)?

(a' +b')?7/2")? b+ ((a! —b')?/2H)h)!)!

01 (c —a)
((a! +b’)'—’<>c!)‘-’ iy (b! o (gh— a!)!)!
ok(b-c)

(@ +p)?o

ch)? = (((@' +bY)? — c?)? ¢ 0)?

(@' +b)? —=c)? = (@ + (b = cH)Y)?

ok(a+b)
C!)?)? - ((a! J,—b!)! b C!)?

(a' + (b’ —
((@' +1!)?<=b')? — (a'<b')!

Forward analysis on arithmetic overflows is defined over a set of rules.

Seeing how it works: Repairing arithmetic overflow (1)

int BinarySearch(int[] array, int value)
{

Contract.Requires(array '= null);
int inf = 0, sup = array.Length - 1

while (inf <= sup)

{

var index = (inf + sup) /2 ; // (*)
var mid = array[index];

if (value == mid) return index;
if (mid < value) inf = index + 1;
else sup = index - 1;
}

return -1;

}

Seeing how it works: Repairing arithmetic overflow (1)

int BinarySearch(int[] array, int value)
{

Contract.Requires(array '= null);
int inf = 0, sup = array.Length - 1

This can overflow!
v{zhile (inf <= sup) Repair by replacing
var index = [inf + sup) /2 // (%) with half sums:

var mid = arraylindex]; inf + (Sup - inf) / 2

if (value == mid) return index;
if (mid < value) inf = index + 1;
else sup = index - 1;
}
return -1;

}

Seeing how it works: Repairing arithmetic overflow (2)

void ThreadSafeCopy(char* sourcePtr, char[] dest,
int destIndex, int count)
{
if (count > 0)
if ((destIndex > dest.Length)

|| ({count + destIndex)] > dest.Length))

throw new ArgumentOutOfRangeException();

A

Fix using: count > dest.Length - destIndex

Evaluation

Overall Asserts
Library Methods Time | Asserts Validated Warnings | Repairs with Repairs
system.Windows.forms 23,338 154.863 137,513 17,350 | 25,501 14,617
mscorlib 22,304 113,982 103,596 10,386 | 16,291 7,180
system 15,187 09,907 00,824 0,083 | 15,618 6.477
system.data.entity 13,884 05.092 81,223 13,869 | 28,648 12,906
system.core 5.953 34,156 30,456 3,700 0,591 2.862
custommarshaler 215 474 433 41 31 - 35
Total 80.881 498,474 444,045 44077

Figure 12. The experimental results of verified repairs on the core .NET libraries. We report the number of methods, the
overall analysis time, the number of assertions, validated assertions, warnings, the number of repairs, the time it took to infer
them, the number of assertions with at least one repair and the percentage of warnings with at least one repair. Time is in
minutes.

80.9% of assertion warnings reported by cccheck had at least one verified repair suggested.
Time spent generating repairs is very small relative to time spent generating warnings.
On integration with Visual Studio, the program analyzed:

6+ methods/second and infers 7.5 repairs/second
10x faster with cccheck caching

Conclusion

The authors produced a design time solution for automatic suggestion of verified
program repair.
-The program to be repaired does not need to be run (or even complete)
-Developer does not need to provide a test suite
-The strict definition of verified repair implies correctness for all suggestions
-Repairs are local and can handle loops/infinite states
-Can be used as an extension of static analyzers with little added overhead
-Full functionality operates with reasonable speed and completeness

Discussion 1

What kind of bugs can we fix using this?

Discussion 2

Does it actually bridge the gap between static
analyzers and dynamic analyzer?

Discussion 3

Can it repair automatically?

Discussion 4

The program requires a set of regular
expressions to capture arithmetic errors. Can this
be exhaustive?

Discussion 5

What else can be added to this to make it more
robust and user independent?

References

Logozzo, F., & Ball, T. (2012). Modular and verified automatic program repair.
Proceedings of the ACM international conference on Object oriented programming
systems languages and applications - OOPSLA '12.
doi:10.1145/2384616.2384626

