
Automatic Error Elimination by Horizontal
Code Transfer Across Multiple

Applications

Authors: Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, Martin Rinard

presenter name(s) removed for FERPA considerations

What is Horizontal Gene Transfer?

● Transfer of functionality evolved and refined in one organism
into another.

Motivation
● Consider the following bugs:

○ Bound access
○ Integer Overflow
○ Division by Zero

● Developer A → didn’t anticipate the bug

● Developer B → did anticipate, and wrote code to handle it

➢ Would be nice if there was a way to automatically repair the faulty program
based on the correct code! But how?

What is Code Phage?
● Horizontal code transfer system that takes correct code from Developer B’s

program and insert into Developer A’s program to handle the bug.

Key Idea

Research Questions

1. Can the HCT* technique transfer code between programs to
eliminate errors?

2. How much time does it take to generate a patch using HCT*?

3. Can HCT* translate a solution from donor to recipient
namespace and data representation?

*Horizontal Code

Transfer

Contributions

Experimental results characterize Code Phage’s ability to:

● Transfer code across divergent functionality applications

● Identify correct code in donor applications for transfer into recipient

● Identify appropriate check insertion points within recipient

● Translate between donor and recipient's respective namespaces and data

representations

High Level Overview of Code Phage

Step 1: Error Discovery

● DIODE:
○ Tool that detects integer-overflow

➢ Example:

○ buggy method: readJPEG()
○ trigger inputs:

� height = 6248
� width = 23200

CWebP, a buggy program that reads JPG files

Step 2: Donor Selection
 ● Uses database of applications to find donor application that:

○ Process the same input format

○ Passes on seed and error-triggering input

➢ Example:

Processes both height and width inputs for JPG format correctly

Step 3: Candidate Check Discovery
● Analyzes conditional statements related

to inputs in donor program

○ height and width

● Observe differences in control flow

○ Donor program possibly has a “check”

that can repair recipient

FEH, lines 17-19 check for overflow

Step 4: Candidate Check Excision
● Translate Check

○ From data structures
○ To applicant independent form as a

function of input bytes

● Code Phage
○ Dynamically tracks flow of input bytes

● Final Translation
○ Represented as symbolic expressions

Symbolic expression of translated check found in FEH

Step 5: Candidate Patch Insertion Point Identification
● Code Phage determines where to express check:

1. Runs recipient on the seeded input

2. Records the input fields that each function reads

3. Identifies points, where the program has read all of the input fields.

reads width and height and determines to

insert check after line 4 in ReadJPG()

What happens if there are multiple insertion points?

● Identify candidate insertion points

● Filter out

○ unstable points (points that reference values irrelevant to input fields)

○ points that cannot be translated

● Sorts remaining patches by size

● Validate patches in the sorted order

Step 6: Patch Translation
● Translate patch from donor so it can be placed into recipient

● Code Phage determines
○ dinfo.height (in FEH) → height (in CWebP)
○ dinfo.width (in FEH) → width (in CWebP)

● Translated Patch:

Step 7: Patch Validation
● Code Phage rebuilds CWebP with generated patch and tests the patch:

1. Ensures compilation finishes correctly

2. Executes patched version of CWebP on error-triggering inputs

3. Runs regression test of inputs to compare output of patched application vs.

original

4. Runs patched version through DIODE error discovery tool to find new errors

5. If there are errors, Code Phage will rerun patch discovery and generation process

● CwebP → no new errors

Can the HCT* technique transfer code between
programs to eliminate errors?

Type of error Recipients Donors Errors Found Errors Fixed

Out of Bounds JasPer v1.9
Gif2tiff v4.0.3

OpenJPEG
Display v6.5.2-9

2 2

Integer Overflow CWebP v0.31
Dillo v2.1

Swfplay v0.55
Display v6.5.2-8

FEH v2.9.3
Mtpaint v3.4

ViewNoir v1.4
VewNoir v0.8.11

7 7

Divide by Zero Wireshark
v1.4.14

Wireshark
v1.8.6

2 2

100% success rate!
*Horizontal Code

Transfer

How much time does it take to generate a patch
using HCT*?

● Minimum: 1 min

● Most Common: 4 min

● Maximum: 18 min

● Average: 6.5 min

*Horizontal Code

Transfer

Can HCT* translate a solution from donor to
recipient namespace and data representation?

if ((tileno < 0) || (tileno >= (cp->tw * cp->th))) { ... }

if (!(!(dec->numtiles <= sot->tileno))) { exit(-1); }

if (real_len) ... if (!(!(plen == 0))) { exit(-1); }

*Horizontal Code

Transfer

Recipient: JasPer 1.9
Donor: OpenJPEG 1.5.2Data Structure Translation

Recipient: Wireshark 1.4.14
Donor: Wireshark 1.8.6Name Translation

Conclusions
● Code Phage

○ “Patches” recipient programs by extracting patches from donor programs

● Effectiveness

○ Overall, effective in being able to create patch fixes → 100% success rate

○ Can successfully translate between data structures and namespaces

○ Only effective, however, if such a donor program exists

Discussion Questions

In addition to program repair, could Code
Phage be made to simply optimize

software?

The results show 100% success rate on
7 applications. Is this enough for Code

Phage to be considered reliable?

Checks created by Code Phage cause
the program to terminate if it doesn’t

pass said check. Can Code Phage be
modified to preserve the program's

functionality instead of terminating it?

Can Code Phage be used to reverse
engineer closed source algorithms?

Would the patches generated by Code
Phage be found acceptable by

developers?

Citations

● https://people.csail.mit.edu/rinard/paper/pldi15.pdf

● http://news.mit.edu/2015/automatic-code-bug-repair-0629

● https://twitter.com/cackerman1/status/618373633359126528

https://people.csail.mit.edu/rinard/paper/pldi15.pdf
https://people.csail.mit.edu/rinard/paper/pldi15.pdf
http://news.mit.edu/2015/automatic-code-bug-repair-0629
http://news.mit.edu/2015/automatic-code-bug-repair-0629
https://twitter.com/cackerman1/status/618373633359126528
https://twitter.com/cackerman1/status/618373633359126528

