
SPLat: Lightweight Dynamic Analysis for Reducing
Combinatorics in Testing Configurable Systems

Kim, Chang Hwan Peter, et al.

presenter name(s) removed for FERPA considerations

Introduction
Same phone, different models

They share some common features and some features vary:

● Screen Size
● Colors
● RAM
● Camera
● so on..

Benefits:

● Satisfies the specific needs of a particular market segment
● Decrease production costs
● Decrease time to market
● Increase quality
● so on..

Introduction
Let’s think of software the same way!

Software Product Line: Family of programs where each program is defined by a unique
combination of features.

Idea is to manufacture software from reusable parts

Introduction

● Problem with SPLs?

Testing is expensive: running each test against all possible configurations.

170 boolean configuration variables

Can be deployed in 2170 different configurations!!

Introduction

● Current Solution

Test is often independent of many configuration variables and need not be run against every
configuration.

Such irrelevant configurations can be pruned from execution.

Current techniques:

❏ Sampling (Random or sophisticated selection of configurations)

Chance of missing out on bugs!

❏ Exhaustive Exploration (Static or Heavyweight Dynamic Analysis)

Too much execution overhead!

Main Contribution

SPLat introduces a,

new light-weight technique for analysis of configurable programs

Key Idea

● Some features are never encountered, no matter how the test is
executed.

● Combinations of such unreachable features lead to the same trace.

For any test,

SPLat runs only the configurations that have a unique
trace

Example

Example

Mandatory

Optional

Constraint: Must have a MENUBAR or TOOLBAR

Example

● Mandatory features are always true

● Optional features may be set to true or false

● Configuration = assignment of values to all feature variables

● Constraint
○ Must have a MENUBAR or TOOLBAR

Configuration is valid iff it satifies all constraints the feature model expresses

Example

Example

Without SPLat :

3 Optional Variables = 8 configurations

MTW = 000
MTW = 001

MTW = 100
MTW = 101

MTW = 110
MTW = 010

MTW = 011
MTW = 111

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT

Example

With SPLat :

3 Optional Variables = 6 configurations

Prune invalid configurations

MTW = 000
MTW = 001

MTW = 100
MTW = 101

MTW = 110
MTW = 010

MTW = 011
MTW = 111

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT
Both M and T false, constraint not satisfied

Constraint: Must have a MENUBAR or TOOLBAR

Example

With SPLat :

3 Optional Variables = 5 configurations

Remove valid configurations that are unnecessary

MTW = 000
MTW = 001

MTW = 100
MTW = 101

MTW = 110
MTW = 010

MTW = 011
MTW = 111

M: MENUBAR

T: TOOLBAR

W: WORDCOUNTBoth M and T false, constraint not satisfied

Non-unique trace, same as 100

Test only calls createToolBar()
which is empty in both
configurations.

Example

With SPLat :

3 Optional Variables = 8 configurations 3 configurations!

MTW = 000
MTW = 001

MTW = 100
MTW = 101

MTW = 010
MTW = 110

MTW = 011
MTW = 111

M: MENUBAR

T: TOOLBAR

W: WORDCOUNTBoth M and T false, constraint not satisfied

Non-unique trace, same as 100

Technique

1) Run initial instance of a test for the SPL

2) Set features
● Mandatory features - true
● Optional features - true or false. Defaulted to false

3) Explore, backtrack, and explore more
● New features are pushed onto a stack as they are encountered

4) Prune invalid configurations until exploration is done

Main Algorithm Overview:

Technique

1) Define a stack to hold unexplored features

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT

0 : False

1 : True

- : “don’t care”

T

Applied Example - Notepad:

2) Run an initial test and gather set of partial
assignments

T is encountered first, push it on to the stack

Stack: [T]

Set T=0 → MTW = -0-

Technique

3) Explore initial set of assignments

Explore MTW=-0-:

Recognize that MTW=00- is invalid →

Two combinations eliminated!

Assert MTW=10-: valid

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT

0 : False

1 : True

- : “don’t care”

T

Applied Example - Notepad:

Technique

4) Bubble up and explore alternate path of
configurations

Set T=1, explore path (MTW=-1-):

 Next, we encounter W. Push W. (Stack: [W, T])

MTW=-10: valid

MTW=-11: valid

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT

0 : False

1 : True

- : “don’t care”

Applied Example - Notepad:

T

WT

Technique

5) Pop out fully explored features
W & T have been fully explored at this point

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT

0 : False

1 : True

- : “don’t care”

Applied Example - Notepad:

T

W

Pop W.

Pop T.

Stack is empty, end SPLat

Technique

6) Collect results

MTW=10-, MTW=-10, and MTW=-11 are all covered in 3 test executions

Thus, 6 feasible combinations were fully explored in 3 configurations!

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT

0 : False

1 : True

- : “don’t care”

Applied Example - Notepad:

Evaluation

● RQ1: Compare with other methods

● RQ2: Overhead?

● RQ3: Scale to industry code?

RQ1 & RQ2: Experiment on SPL
● 10 software product lines (SPLs) as test subjects

● Comare with:
● Naive approach: run on all valid configurations

○ NewJVM: spawn a new JVM for each test run
○ ReuseJVM: require an explicit reset function

● Static approach:
○ SRA (Static Reachablility Analysis): determine

reachable configurations by static analysis

JVM: Java Virtual Machine
Required for running Java
Consumes time to create

No comparison with other
dynamic approaches!

Efficiency

NewJVM vs. ReuseJVM:

Reusing JVM saves time

Efficiency

NewJVM vs. ReuseJVM:

Reusing JVM saves time

ReuseJVM vs. SPLat:

SPLat reduces time when #Confs

is reduced

SPLat vs. SRA

SPLat is more precise:

SPLat.Confs <

SRA.Confs

SPLat is more efficient:

SPLat.Overhead

< SRA.Overhead;

SPLat.IdealTime

< SRA.Time

Answer to QR1:
comparison

SPLat is more efficient
than ReuseJVM and SRA

SPLat prunes
configurations faster
and more precisely than
SRA

Answer to QR2: Overhead

Large relative overhead for
short tests (LOW)

Small for long tests (HIGH)

→ Can save total time even
with large overhead

RQ3: Test on Groupon codebase
● Groupon PWA:

○ >171K lines of Ruby code

○ >170 (boolean) feature variables → 2170 configurations

○ Test code: >231K lines

○ >19K Rspec tests, each under one configuration

● Apply SPLat:

○ Allow varying features

→ #Configurations each test covers? (upperbound 16)

→ #Features each test encounters?

RQ3: Test on Groupon codebase

Answer to RQ3:
SPLat can scale to large industrial code
with low implementation cost

Critiques:
● Introduced upperbound (16) for #configs to simplify the problem
● Assumed no constraints among features
● Didn't report time cost

The maximum is 43: << 170

"17" means >16

#Configs << 2170

Total:
>170 features
>19K tests

Discussion

Question 1:

How do the previously mentioned critiques affect the
validity of SPLat scaling to large codebases?

Discussion

Question 2:

Can SPLat scale to non-boolean variables? How?

Discussion

Question 3:

What will SPLat do if a feature is encountered but its code
has no effect?

Discussion

Question 4:

Can you think of any potential optimization to improve the
efficiency of SPLat?

Discussion

Question 5:

What needs to be done to apply SPLat to an SPL program?

References

1. http://www.methodsandtools.com/archive/archive.php?id=45
2. http://www.sei.cmu.edu/productlines/
3. http://resources.sei.cmu.edu/asset_files/Presentation/2008_017_001_242

46.pdf

http://www.methodsandtools.com/archive/archive.php?id=45
http://www.methodsandtools.com/archive/archive.php?id=45
http://www.sei.cmu.edu/productlines/
http://www.sei.cmu.edu/productlines/
http://resources.sei.cmu.edu/asset_files/Presentation/2008_017_001_24246.pdf
http://resources.sei.cmu.edu/asset_files/Presentation/2008_017_001_24246.pdf
http://resources.sei.cmu.edu/asset_files/Presentation/2008_017_001_24246.pdf

Thank you!

