SPLat: Lightweight Dynamic Analysis for Reducing Combinatorics in Testing Configurable Systems

Kim, Chang Hwan Peter, et al.

presenter name(s) removed for FERPA considerations

Same phone, different models

They share some common features and some features vary:

- Screen Size
- Colors
- RAM
- Camera
- so on..

Benefits:

- Satisfies the specific needs of a particular market segment
- Decrease production costs
- Decrease time to market
- Increase quality
- so on..

Let's think of software the same way!

Software Product Line: Family of programs where each program is defined by a unique combination of features.

Idea is to manufacture software from reusable parts

• Problem with SPLs?

Testing is expensive: running each test against all possible configurations.

170 boolean configuration variables

Can be deployed in 2¹⁷⁰ different configurations!!

Current Solution

Test is often independent of many configuration variables and need not be run against every configuration.

Such irrelevant configurations can be pruned from execution.

Current techniques:

- Sampling (Random or sophisticated selection of configurations)
 Chance of missing out on bugs!
- *Exhaustive Exploration* (Static or Heavyweight Dynamic Analysis)
 Too much execution overhead!

Main Contribution

SPLat introduces a,

new *light-weight* technique for analysis of configurable programs

Key Idea

- Some features are never encountered, no matter how the test is executed.
- Combinations of such unreachable features lead to the same *trace*.

For any test,

SPLat runs only the configurations that have a unique trace

MENUBAR V TOOLBAR

Figure 1: Feature Model

Constraint: Must have a MENUBAR or TOOLBAR

- Mandatory features are always *true*
- Optional features may be set to *true* or *false*
- Configuration = assignment of values to all feature variables
- Constraint
 - Must have a MENUBAR or TOOLBAR

Configuration is valid iff it satifies all constraints the feature model expresses

```
public void test() {
1
    Notepad n = new Notepad();
2
    n.createToolBar();
3
4
    // Automated GUI testing
5
    FrameFixture f = newFixture(n);
6
7
    f.show();
    String text = "Hello";
8
    f.textBox().enterText(text);
9
10
    f.textBox().requireText(text);
11
    f.cleanUp();
12
```

(b) Test

class Notepad extends JFrame { 1 Notepad() { 2 getContentPane().add(newJTextArea()); 3 } 4 5 void createToolBar() { 6 if (TOOLBAR) { 7 JToolBar toolBar = new JToolBar(); 8 getContentPane().add 9 10 ("North", toolBar); if (WORDCOUNT) 11 12 JButton button = new 13 JButton ("wordcount.gif"); toolBar.add(button); 14 15 } 16 17 18 void createMenuBar() { 19 if (MENUBAR) { 20 JMenuBar menuBar = new JMenuBar(); 21 setJMenuBar(menuBar); 22 if (WORDCOUNT) { 23 JMenu menu = new 24 JMenu("Word Count"); 25 26 menuBar.add(menu); 27 28 29 30

Without SPLat :

3 Optional Variables = 8 configurations

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT

MTW = 000
MTW = 001
MTW = 100
MTW = 101
MTW = 110
MTW = 010
MTW = 011
MTW = 111

With SPLat :

3 Optional Variables = **6** configurations

Prune invalid configurations

M: MENUBAR

T: TOOLBAR

MTW = 000 MTW = 001	×	Both M and T false, constraint not satisfied	W: WORDCOUNT
MTW = 100 MTW = 101			
MTW = 110		Constraint: Must have a MENUBA	R or TOOLBAR
MTW = 010			
MTW = 011			
MTW = 111			

With SPLat :

- 3 Optional Variables = 5 configurations
 M: MENUBAR

 Remove valid configurations that are unnecessary
 T: TOOLBAR

 MTW = 000 ★
 Both M and T false, constraint not satisfied
 W: WORDCOUNT

 MTW = 001 ★
 Both M and T false, constraint not satisfied
 W: WORDCOUNT
- MTW = 100 🗸
- MTW = 101 **x** Non-unique trace, same as 100

MTW = 110 MTW = 010 MTW = 011 MTW = 111

```
public void test() {
1
    Notepad n = new Notepad();
2
    n.createToolBar();
3
4
    // Automated GUI testing
5
    FrameFixture f = newFixture(n);
6
    f.show();
7
    String text = "Hello";
8
    f.textBox().enterText(text);
9
    f.textBox().requireText(text);
10
    f.cleanUp();
11
12
   }
```

Test only calls *createToolBar()* which is empty in both configurations.

With SPLat :

3 Optional Variables = *& configurations* **3 configurations!**

M: MENUBAR

T: TOOLBAR

Main Algorithm Overview:

1) Run **initial instance** of a test for the SPL

2) Set features

- Mandatory features true
- Optional features true or false. Defaulted to false

3) Explore, backtrack, and explore more

- New features are pushed onto a stack as they are encountered
- 4) **Prune invalid** configurations until exploration is done

Applied Example - Notepad:

- 1) **Define a stack** to hold unexplored features
- 2) Run an **initial test** and gather set of partial assignments

T is encountered first, push it on to the stack

Stack: [T]

Set T=0 \rightarrow MTW = -0-

- M: MENUBAR 0 : False T: TOOLBAR 1 : True
- W: WORDCOUNT : "don't care"

Applied Example - Notepad:

3) Explore initial set of assignments

Explore MTW=-0-:

Recognize that MTW=00- is invalid \rightarrow

Two combinations eliminated!

Assert MTW=10-: valid

- M: MENUBAR 0 : False
- T: TOOLBAR 1 : True
- W: WORDCOUNT -: "don't care"

Applied Example - Notepad:

4) **Bubble up** and explore alternate path of configurations

Set T=1, explore path (MTW=-1-):

Next, we encounter W. Push W. (Stack: [W, T])

MTW=-10: valid

MTW=-11: valid

M: MENUBAR 0 : False T: TOOLBAR 1 : True W: WORDCOUNT - : "don't care"

Applied Example - Notepad:

5) **Pop out** fully explored features

W & T have been fully explored at this pointPop W.Pop T.Stack is empty, end SPLat

M: MENUBAR 0 : False T: TOOLBAR 1 : True W: WORDCOUNT - : "don't care"

M: MENUBAR 0 : False

T: TOOLBAR 1 : True

W: WORDCOUNT - : "don't care"

Applied Example - Notepad:

6) Collect results

MTW=10-, MTW=-10, and MTW=-11 are all covered in 3 test executions

Thus, 6 feasible combinations were fully explored in 3 configurations!

Evaluation

- **RQ1:** Compare with other methods
- **RQ2:** Overhead?
- **RQ3:** Scale to industry code?

RQ1 & RQ2: Experiment on SPL

• 10 software product lines (SPLs) as test subjects Table 1: Subject SPLs

SPL	Features	Confs	LOC
101Companies	11	192	2,059
Elevator	5	20	1,046
Email	8	40	1,233
GPL	14	73	1,713
JTopas	5	32	2,031
MinePump	6	64	580
Notepad	23	144	2.074
Prevayler	5	32	2,844
Sudoku	6	20	853
XStream	7	128	14,480

- Comare with:
- **Naive approach:** run on *all* valid configurations
 - **NewJVM**: spawn a new JVM for each test run
 - **ReuseJVM**: require an explicit reset function
- Static approach:
 - **SRA** (Static Reachablility Analysis): determine reachable configurations by static analysis

JVM: Java Virtual Machine Required for running Java Consumes time to create

No comparison with other dynamic approaches!

	A	ll Valid	~			12	SPLa	at	2		Static	Reachabilit	y (SRA)
Test	NewJVM	Reuse	eJVM	0	Confs	SPLa	atTime	IdealTime	Ove	rhead	Confs	Overhead	Time
					101	Compa	nies (19	2 configs)					
LOW	35.46	2.13	(6%)	32	(16%)	1.64	(77%)	0.72	0.92	(127%)	96	84.04	1.28
MED	49.37	3.90	(7%)	160	(83%)	6.84	(175%)	3.58	3.26	(91%)	192	82.54	3.99
HIGH	283.69	45.26	(15%)	176	(91%)	47.6	(105%)	41.59	6. <mark>01</mark>	(14%)	192	81.93	45.16
						Elevate	or (20 c	onfigs)					
LOW	10.74	5.17	(48%)	2	(10%)	1.33	(25%)	0.71	0.62	(87%)	2	23.29	0.76
MED	50.97	46.65	(91%)	10	(50%)	23.62	(50%)	23.14	0.48	(2%)	20	23.74	46.17
HIGH	62.57	59.48	(95%)	20	(100%)	60.71	(102%)	59.28	1.43	(2%)	20	24.38	60.43
	Email (40 configs)												
LOW	40.63	10.74	(26%)	1	(2%)	1.00	(9%)	0.87	0.13	(14%)	1	23.62	0.87
MED	57.56	48.87	(84%)	30	(75%)	36.99	(75%)	37.14	-0.15	(0%)	40	22.81	49.02
HIGH	58.02	48.93	(84%)	40	(100%)	48.96	(100%)	49.26	-0.31	(0%)	40	23.84	49.16
GPL (73 configs)													
LOW	19.21	2.23	(11%)	6	(8%)	0.79	(35%)	0.29	0.49	(168%)	6	104.97	0.30
MED	190.53	171.62	(90%)	55	(75%)	130.87	(76%)	128.52	2.35	(1%)	55	99.41	128.69
HIGH	314.20	285.89	(90%)	70	(95%)	278.77	(97%)	277.48	1.29	(0%)	73	103.52	286.28
JTopas (32 configs)													
LOW	26.59	16.83	(63%)	8	(25%)	6.29	(37%)	4.49	1.80	(40%)	32	86.87	16.44
MED	29.04	18.55	(63%)	16	(50%)	13.16	(70%)	9.71	3.46	(35%)	32	86.87	18.70
HIGH	28.92	18.93	(65%)	32	(100%)	25.31	(133%)	18.43	6.88	(37%)	32	86.87	18.48
MinePump (64 configs)													
LOW	23.71	7.53	(31%)	9	(14%)	3.65	(48%)	1.90	1.75	(91%)	64	22.69	7.49
MED	59.72	14.78	(24%)	24	(37%)	10.43	(70%)	6.26	4.17	(66%)	64	22.38	15.35
HIGH	13.72	5.75	(41%)	48	(75%)	37.80	(657%)	4.81	32.99	(685%)	64	22.18	5.77
						Notepa	d (144 d	configs)					
LOW	398.22	135.60	(34%)	2	(1%)	3.06	(2%)	2.45	0.61	(24%)	144	80.40	135.47
MED	418.23	156.27	(37%)	96	(66%)	104.95	(67%)	104.91	0.04	(0%)	144	80.62	156.35
HIGH	419.99	153.39	(36%)	144	(100%)	153.11	(99%)	152.16	0.94	(0%)	144	81.29	151.94
						Prevay	ler (32 d	configs)					
LOW	65.34	40.23	(61%)	12	(37%)	22.49	(55%)	22.8	-0.31	(-1%)	32	205.54	45.39
MED	121.38	96.50	(79%)	24	(75%)	102.49	(106%)	105.86	-3.37	(-3%)	32	214.67	111.37
HIGH	149.08	120.7	(80%)	32	(100%)	127.17	(105%)	131.37	-4.20	(-3%)	32	290.66	135.61
						Sudok	u (20 co	onfigs)	-/				
LOW	51.11	48.10	(94%)	4	(20%)	42.72	(88%)	24.12	18.6	(77%)	10	31.87	24.28
MED	118.14	105.67	(89%)	10	(50%)	58.31	(55%)	54.16	4.15	(7%)	10	31.75	53.67
HIGH	489.60	334.82	(68%)	20	(100%)	316.47	(94%)	332.36	-15.89	(-4%)	20	31.74	338.48
						Xstream	n (128 d	configs)					
LOW	111.26	30.04	(27%)	2	(1%)	1.57	(5%)	1.08	0.49	(45%)	2	106.50	1.06
MED	105.10	9.04	(8%)	64	(50%)	5.77	(63%)	5.26	0.51	(9%)	64	109.22	5.14
HIGH	101.66	8.68	(8%)	128	(100%)	9.16	(105%)	8.59	0.57	(6%)	128	105.68	8.74

	A	ll Valid					SPLa	at			Static	Reachabilit	y (SRA)
Test	NewJVM	Reuse	eJVM	0	Confs SPLatTime IdealTime Overhead						Confs	Overhead	Time
					101	Compa	nies (19	2 configs)					
LOW	35.46	2.13	(6%)	32	(16%)	1.64	(77%)	0.72	0.92	(127%)	96	84.04	1.28
MED	49.37	3.90	(7%)	160	(83%)	6.84	(175%)	3.58	3.26	(91%)	192	82.54	3.99
HIGH	283.69	45.26	(15%)	176	(91%)	47.6	(105%)	41.59	6.01	(14%)	192	81.93	45.16
						Elevate	or (20 c	onfigs)					
LOW	10.74	5.17	(48%)	2	(10%)	1.33	(25%)	0.71	0.62	(87%)	2	23.29	0.76
MED	50.97	46.65	(91%)	10	(50%)	23.62	(50%)	23.14	0.48	(2%)	20	23.74	46.17
HIGH	62.57	59.48	(95%)	20	(100%)	60.71	(102%)	59.28	1.43	(2%)	20	24.38	60.43
						Emai	l (40 co	nfigs)					
LOW	40.63	10.74	(26%)	1	(2%)	1.00	(9%)	0.87	Effic	iency			
MED	57.56	48.87	(84%)	30	(75%)	36.99	(75%)	37.14		-			
HIGH	58.02	48.93	(84%)	40	(100%)	48.96	(100%)	49.26					
						GPL	(73 cor	nfigs)					
LOW	19.21	2.23	(11%)	6	(8%)	0.79	(35%)	0.29	New	JVM vs	Reus	e.IVM	
MED	190.53	171.62	(90%)	55	(75%)	130.87	(76%)	128.52					
HIGH	314.20	285.89	(90%)	70	(95%)	278.77	(97%)	277.48	Dour			o timo	
	JTopas (32 configs)												
LOW	26.59	16.83	(63%)	8	(25%)	6.29	(37%)	4.49					
MED	29.04	18.55	(63%)	16	(50%)	13.16	(70%)	9.71					
HIGH	28.92	18.93	(65%)	32	(100%)	25.31	(133%)	18.43					
					ľ	MinePu	mp (64	configs)					
LOW	23.71	7.53	(31%)	9	(14%)	3.65	(48%)	1.90					
MED	59.72	14.78	(24%)	24	(37%)	10.43	(70%)	6.26					
HIGH	13.72	5.75	(41%)	48	(75%)	37.80	(657%)	4.81					
						Notepa	d (144 d	configs)					
LOW	398.22	135.60	(34%)	2	(1%)	3.06	(2%)	2.45					
MED	418.23	156.27	(37%)	96	(66%)	104.95	(67%)	104.91			11		
HIGH	419.99	153.39	(36%)	144	(100%)	153.11	(99%)	152.16	0.94	(0%)	144	81.29	151.94
						Prevay	ler (32 d	configs)					
LOW	65.34	40.23	(61%)	12	(37%)	22.49	(55%)	22.8	-0.31	(-1%)	32	205.54	45.39
MED	121.38	96.50	(79%)	24	(75%)	102.49	(106%)	105.86	-3.37	(-3%)	32	214.67	111.37
HIGH	149.08	120.7	(80%)	32	(100%)	127.17	(105%)	131.37	-4.20	(-3%)	32	290.66	135.61
						Sudok	u (20 co	onfigs)					
LOW	51.11	48.10	(94%)	4	(20%)	42.72	(88%)	24.12	18.6	(77%)	10	31.87	24.28
MED	118.14	105.67	(89%)	10	(50%)	58.31	(55%)	54.16	4.15	(7%)	10	31.75	53.67
HIGH	489.60	334.82	(68%)	20	(100%)	316.47	(94%)	332.36	-15.89	(-4%)	20	31.74	338.48
					to a state of the	Xstream	n (128 d	configs)					
LOW	111.26	30.04	(27%)	2	(1%)	1.57	(5%)	1.08	0.49	(45%)	2	106.50	1.06
MED	105.10	9.04	(8%)	64	(50%)	5.77	(63%)	5.26	0.51	(9%)	64	109.22	5.14
HIGH	101.66	8.68	(8%)	128	(100%)	9.16	(105%)	8.59	0.57	(6%)	128	105.68	8.74

	A	ll Valid				12	SPLat				Static	Reachabilit	y (SRA)
Test	NewJVM	Reuse	eJVM	0	Confs	SPLa	tTime	IdealTime	Ove	rhead	Confs	Overhead	Time
					101	Compa	nies (192	onfigs)					
LOW	35.46	2.13	(6%)	32	(16%)	1.64	(77%)	0.72	0.92	(127%)	96	84.04	1.28
MED	49.37	3.90	(7%)	160	(83%)	6.84	(175%)	3.58	3.26	(91%)	192	82.54	3.99
HIGH	283.69	45.26	(15%)	176	(91%)	47.6	(105%)	41.59	6. <mark>01</mark>	(14%)	192	81.93	45.16
						Elevate	or (20 con	igs)					
LOW	10.74	5.17	(48%)	2	(10%)	1.33	(25%)	0.71	0.62	(87%)	2	23.29	0.76
MED	50.97	46.65	(91%)	10	(50%)	23.62	(50%)	23.14	0.48	(2%)	20	23.74	46.17
HIGH	62.57	59.48	(95%)	20	(100%)	60.71	(102%)	59.28	1.43	(2%)	20	24.38	60.43
						Emai	l (40 conf	igs)					
LOW	40.63	10.74	(26%)	1	(2%)	1.00	(9%)	0.87	Effic	iency			
MED	57.56	48.87	(84%)	30	(75%)	36.99	(75%)	37.14					
HIGH	58.02	48.93	(84%)	40	(100%)	48.96	(100%)	49.26					
	1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -			90		GPL	(73 confi	gs)					
LOW	19.21	2.23	(11%)	6	(8%)	0.79	(35%)	0.29	New.	IVM vs	Reus	e.IVM	
MED	190.53	171.62	(90%)	55	(75%)	130.87	(76%)	128.52	11011				
HIGH	314.20	285.89	(90%)	70	(95%)	278.77	(97%)	277.48	Douis	ing N/M		e timo	
						JTopa	s (32 con	figs)	Reus	ang Jvi	vi save	sume	
LOW	26.59	16.83	(63%)	8	(25%)	6.29	(37%)	4.49					
MED	29.04	18.55	(63%)	16	(50%)	13.16	(70%)	9.71					
HIGH	28.92	18.93	(65%)	32	(100%)	25.31	(133%)	18.43	_			_	
					ľ	MinePu	mp (64 c	onfigs)	Reus	SeJVM	vs. SP	Lat:	
LOW	23.71	7.53	(31%)	9	(14%)	3.65	(48%)	1.90					
MED	59.72	14.78	(24%)	24	(37%)	10.43	(70%)	6.26	SPLa	at reduc	es time	e when #0	Confs
HIGH	13.72	5.75	(41%)	48	(75%)	37.80	(657%)	4.81					
						Notepa	d (144 co	nfigs)	is rec	luced			
LOW	398.22	135.60	(34%)	2	(1%)	3.06	(2%)	2.45					
MED	418.23	156.27	(37%)	96	(66%)	104.95	(67%)	104.91					
HIGH	419.99	153.39	(36%)	144	(100%)	153.11	(99%)	152.16	0.94	(0%)	144	81.29	151.94
						Prevay	ler (32 co	nfigs)					
LOW	65.34	40.23	(61%)	12	(37%)	22.49	(55%)	22.8	-0.31	(-1%)	32	205.54	45.39
MED	121.38	96.50	(79%)	24	(75%)	102.49	(106%)	105.86	-3.37	(-3%)	32	214.67	111.37
HIGH	149.08	120.7	(80%)	32	(100%)	127.17	(105%)	131.37	-4.20	(-3%)	32	290.66	135.61
						Sudok	u (20 con	figs)					
LOW	51.11	48.10	(94%)	4	(20%)	42.72	(88%)	24.12	18.6	(77%)	10	31.87	24.28
MED	118.14	105.67	(89%)	10	(50%)	58.31	(55%)	54.16	4.15	(7%)	10	31.75	53.67
HIGH	489.60	334.82	(68%)	20	(100%)	316.47	(94%)	332.36	-15.89	(-4%)	20	31.74	338.48
						Xstream	n (128 co	nfigs)					
LOW	111.26	30.04	(27%)	2	(1%)	1.57	(5%)	1.08	0.49	(45%)	2	106.50	1.06
MED	105.10	9.04	(8%)	64	(50%)	5.77	(63%)	5.26	0.51	(9%)	64	109.22	5.14
HIGH	101.66	8.68	(8%)	128	(100%)	9.16	(105%)	8.59	0.57	(6%)	128	105.68	8.74

All Valid		SPL	at		-	Static	Reachabilit	y (SRA)
Test NewJVM ReuseJVM	Confs	SPLatTime	IdealTime	Over	rhead	Confs	Overhead	Time
	10	1 Companies (1	2 configs)					
	32 (16%)	1.64 (77%)	0.72	0.92	(127%)	96	84.04	1.28
SPLat vs. SRA	160 (83%)	6.84 (175%)	3.58	3.26	(91%)	192	82.54	3.99
	176 (91%)	47.6 (105%)	41.59	6.01	(14%)	192	81.93	45.16
SPLat is more precise:		Elevator (20 d	onfigs)					
	2 (10%)	1.33 (25%)	0.71	0.62	(87%)	2	23.29	0.76
SPLat.Confs <	10 (50%)	23.62 (50%)	23.14	0.48	(2%)	20	23.74	46.17
	20 (100%)	60.71 (102%)	59.28	1.43	(2%)	20	24.38	60.43
SRA.Confs		Email (40 co	nngs)					
	1 (2%)	1.00 (9%)	0.87	0.13	(14%)	1	23.62	0.87
SPI at is more efficient	30 (75%)	36.99 (75%)	37.14	-0.15	(0%)	40	22.81	49.02
or Eat is more emelent.	40 (100%)	48.96 (100%)	49.26	-0.31	(0%)	40	23.84	49.16
SPI at Overhead		GPL (73 cos	nfigs)					
SF Lat. Overneau	6 (8%)	0.79 (35%)	0.29	0.49	(168%)	6	104.97	0.30
	55 (75%)	130.87 (76%)	128.52	2.35	(1%)	55	99.41	128.69
< SRA.Overnead;	70 (95%)	278.77 (97%)	277.48	1.29	(0%)	13	103.52	286.28
		JTopas (32 c	onfigs)		(
SPLat.idealTime	8 (25%)	6.29 (37%)	4.49	1.80	(40%)	32	86.87	16.44
	16 (50%)	13.10 (70%) 25.21 (122%)	9.71	3.40	(35%)	32	80.87	18.70
< SRA.Time	<u> </u>	25.51 (15576)	10.43	0.00	(3170)	52	00.07	10.40
		MinePump (64	configs)	1.75	(0107)	C 4	00.00	7.40
MED 59.72 14.78 (24%)	9 (14%) 24 (37%)	3.65 (48%) 10.43 (70%)	6.26	1.75	(91%)	64	22.69	15.35
(2470)	48 (75%)	37.80 (657%)	4.81	32.99	(685%)	64	22.18	5.77
Answer to QR1:		Notopad (144	confige)	02100	(00070)			0.11
comparioon	1 2 (1%)	3.06 (2%)	2 45	0.61	(24%)	144	80.40	135 /7
comparison	96 (66%)	104.95 (67%)	104.91	0.01	(0%)	144	80.62	156.35
	144 (100%)	153.11 (99%)	152.16	0.94	(0%)	144	81.29	151.94
SPL at is more efficient		Prevayler (32	configs)					
there Deveel (Married CDA	12 (37%)	22.49 (55%)	22.8	-0.31	(-1%)	32	205.54	45.39
than Reuselvivi and SRA	24 (75%)	102.49 (106%)	105.86	-3.37	(-3%)	32	214.67	111.37
	32 (100%)	127.17 (105%)	131.37	-4.20	(-3%)	32	290.66	135.61
SPI at nrunes		Sudoku (20 c	onfigs)	87	172			
	4 (20%)	42.72 (88%)	24.12	18.6	(77%)	10	31.87	24.28
configurations faster	10 (50%)	58.31 (55%)	54.16	4.15	(7%)	10	31.75	53.67
and more precisely than 🚺	20 (100%)	316.47 (94%)	332.36	-15.89	(-4%)	20	31.74	338.48
SDV		Xstream (128	configs)					
	2 (1%)	1.57 (5%)	1.08	0.49	(45%)	2	106.50	1.06
	64 (50%)	5.77 (63%)	5.26	0.51	(9%)	64	109.22	5.14
	1 100 (1000)	0.10 (10507)	0 50	0 57	(6%)	1 1 2 8	105 68	8 74

Table 2, Experimental fleship for various ferningues	Table 2:	Experimental	Results	for Various	Techniques
--	----------	--------------	---------	-------------	------------

		A	ll Valid				12	SPL	at 🛛			Static	Reachabilit	y (SRA)
	Test	NewJVM	Reuse	eJVM	0	Confs	SPLa	tTime	IdealTime	Ove	rhead	Confs	Overhead	Time
						101	Compa	nies (19	92 configs)				•	
	LOW	35.46	2.13	(6%)	32	(16%)	1.64	(77%)	0.72	0.92	(127%)	96	84.04	1.28
	MED	49.37	3.90	(7%)	160	(83%)	6.84	(175%)	3.58	3.26	(91%)	192	82.54	3.99
	HIGH	283.69	45.26	(15%)	176	(91%)	47.6	(105%)	41.59	6.01	(14%)	192	81.93	45.16
							Elevato	or (20 c	onfigs)					
	LOW	10.74	5.17	(48%)	2	(10%)	1.33	(25%)	0.71	0.62	(87%)	2	23.29	0.76
	MED	50.97	46.65	(91%)	10	(50%)	23.62	(50%)	23.14	0.48	(2%)	20	23.74	46.17
	HIGH	62.57	59.48	(95%)	20	(100%)	60.71	(102%)	59.28	1.43	(2%)	20	24.38	60.43
							Emai	1 (40 co	nfigs)					
	LOW	40.63	10.74	(26%)	1	(2%)	1.00	(9%)	0.87	0.13	(14%)	1	23.62	0.87
	MED	57.56	48.87	(84%)	30	(75%)	36.99	(75%)	37.14	-0.15	(0%)	40	22.81	49.02
	HIGH	58.02	48.93	(84%)	40	(100%)	48.96	(100%)	49.26	-0.31	(0%)	40	23.84	49.16
	GPL (73 configs)													
	LOW	19.21	2.23	(11%)	6	(8%)	0.79	(35%)	0.29	0.49	(168%)	6	104.97	0.30
	MED	190.53	171.62	(90%)	55	(75%)	130.87	(76%)	128.52	2.35	(1%)	55	99.41	128.69
	HIGH	314.20	285.89	(90%)	70	(95%)	278.77	(97%)	277.48	1.29	(0%)	73	103.52	286.28
							JTopa	s (32 co	onfigs)					
	X OTT		10.00	(0004)	8	(25%)	6.29	(37%)	4.49	1.80	(40%)	32	86.87	16.44
Λ	newor	to OP2.	Overh	bood	16	(50%)	13.16	(70%)	9.71	3.46	(35%)	32	86.87	18.70
	113461		Overn		32	(100%)	25.31	(133%)	18.43	6.88	(37%)	32	86.87	18.48
						I	MinePu	mp (64	configs)					
Lá	arge re	elative ov	erhead	d for	9	(14%)	3.65	(48%)	1.90	1.75	(91%)	64	22.69	7.49
~ 1	a ort to		\ \		24	(37%)	10.43	(70%)	6.26	4.17	(66%)	64	22.38	15.35
51	ion te	SIS (LOW))		48	(75%)	37.80	(657%)	4.81	32.99	(685%)	64	22.18	5.77
							Notepa	d (144	configs)			la de la companya de	(h	
S١	mall fo	r long te	sts (HI	GH)	2	(1%)	3.06	(2%)	2.45	0.61	(24%)	144	80.40	135.47
					96	(66%)	104.95	(67%)	104.91	0.04	(0%)	144	80.62	156.35
					144	(100%)	153.11	(99%)	152.16	0.94	(0%)	144	81.29	151.94
							Prevayl	ler (32 d	configs)					
					12	(37%)	22.49	(55%)	22.8	-0.31	(-1%)	32	205.54	45.39
					24	(75%)	102.49	(106%)	105.86	-3.37	(-3%)	32	214.67	111.37
	Can s	save total	l time	even 📕	32	(100%)	127.17	(105%)	131.37	-4.20	(-3%)	32	290.66	135.61
	ith lar	a overh	hca				Sudok	и (20 с	onfigs)					
vv	iti i ai a	geovern	eau		4	(20%)	42.72	(88%)	24.12	18.6	(77%)	10	31.87	24.28
					10	(50%)	58.31	(55%)	54.16	4.15	(7%)	10	31.75	53.67
	HIGH	489.60	334.82	(68%)	20	(100%)	316.47	(94%)	332.36	-15.89	(-4%)	20	31.74	338.48
							Xstrear	n (128 d	$\operatorname{configs})$					
	LOW	111.26	30.04	(27%)	2	(1%)	1.57	(5%)	1.08	0.49	(45%)	2	106.50	1.06
	MED	105.10	9.04	(8%)	64	(50%)	5.77	(63%)	5.26	0.51	(9%)	64	109.22	5.14
	HIGH	101.66	8.68	(8%)	128	(100%)	9.16	(105%)	8.59	0.57	(6%)	128	105.68	8.74

RQ3: Test on Groupon codebase

- Groupon PWA:
 - >171K lines of Ruby code
 - \circ >170 (boolean) feature variables $\rightarrow 2^{170}$ configurations
 - Test code: >231K lines
 - >19K Rspec tests, each under one configuration

- Apply SPLat:
 - Allow varying features
 - \rightarrow #Configurations each test covers? (upperbound 16)
 - \rightarrow #Features each test encounters?

RQ3: Test on Groupon codebase

Total: >170 features >19K tests

Table 3: 1	Reachab	le Configu	irations
Configs	Tests	Configs	Tests
1	11,711	2	1,757
3	332	4	882
5	413	6	113
7	19	8	902
9	207	10	120
11	29	12	126
13	6	14	32
15	10	16	349
17	$2,\!695$	-	-
"17" mea	ns >16		

#Configs << 2¹⁷⁰

Answer to RQ3:

SPLat can scale to large industrial code with low implementation cost

Critiques:

- Introduced upperbound (16) for #configs to simplify the problem
- Assumed **no constraints** among features
- Didn't report **time cost**

64	Table 4	l: Acce	ssed Fe	atures	
Vars	Tests	Vars	Tests	Vars	Tests
0	11,711	1	1,757	2	$1,\!148$
3	1,383	4	705	5	389
6	466	7	323	8	425
9	266	10	140	11	86
12	80	13	34	14	28
15	54	16	62	17	1
19	14	20	260	21	109
22	45	23	19	24	22
25	9	26	2	27	14
28	17	29	6	30	8
31	24	32	6	33	14
34	31	35	11	36	15
37	8	38	2	39	2
40	3	42	2	43	2

The maximum is 43: << 170

Question 1:

How do the previously mentioned critiques affect the validity of SPLat scaling to large codebases?

Question 2:

Can SPLat scale to non-boolean variables? How?

Question 3:

What will SPLat do if a feature is encountered but its code has no effect?

Question 4:

Can you think of any potential optimization to improve the efficiency of SPLat?

Question 5:

What needs to be done to apply SPLat to an SPL program?

- 1. <u>http://www.methodsandtools.com/archive/archive.php?id=45</u>
- 2. <u>http://www.sei.cmu.edu/productlines/</u>
- 3. <u>http://resources.sei.cmu.edu/asset_files/Presentation/2008_017_001_242</u> <u>46.pdf</u>

Thank you!