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Introduction
Same phone, different models

They share some common features and some features vary:

● Screen Size
● Colors
● RAM
● Camera
● so on.. 

Benefits:

● Satisfies the specific needs of a particular market segment
● Decrease production costs
● Decrease time to market
● Increase quality
● so on.. 



Introduction
Let’s think of software the same way!

Software Product Line:  Family of programs where each program is defined by a unique 
combination of features.

Idea is to manufacture software from reusable parts 



Introduction

● Problem with SPLs?

Testing is expensive: running each test against all possible configurations.

170 boolean configuration variables

Can be deployed in 2170 different configurations!!



Introduction

● Current Solution

Test is often independent of many configuration variables and need not be run against every 
configuration.

Such irrelevant configurations can be pruned from execution.

Current techniques:

❏ Sampling (Random or sophisticated selection of configurations)

Chance of missing out on bugs!

❏ Exhaustive Exploration (Static or Heavyweight Dynamic Analysis)

Too much execution overhead!



Main Contribution

SPLat introduces a,

new light-weight technique for analysis of configurable programs

 



Key Idea

● Some features are never encountered, no matter how the test is 
executed. 

● Combinations of such unreachable features lead to the same trace.

For any test,

SPLat runs only the configurations that have a unique 
trace



Example



Example

Mandatory

Optional

Constraint: Must have a MENUBAR or TOOLBAR 



Example

● Mandatory features are always true

● Optional features may be set to true or false

● Configuration = assignment of values to all feature variables

● Constraint
○ Must have a MENUBAR or TOOLBAR 

Configuration is valid iff it satifies all constraints the feature model expresses



Example



Example

Without SPLat :

3 Optional Variables = 8 configurations 

MTW = 000 
MTW = 001

MTW = 100 
MTW = 101

MTW = 110
MTW = 010

MTW = 011
MTW = 111

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT



Example

With SPLat :

3 Optional Variables = 6 configurations 

Prune invalid configurations

MTW = 000 
MTW = 001

MTW = 100 
MTW = 101

MTW = 110
MTW = 010

MTW = 011
MTW = 111

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT
Both M and T false, constraint not satisfied 

Constraint: Must have a MENUBAR or TOOLBAR 



Example

With SPLat :

3 Optional Variables = 5 configurations 

Remove valid configurations that are unnecessary

MTW = 000 
MTW = 001

MTW = 100 
MTW = 101

MTW = 110
MTW = 010

MTW = 011
MTW = 111

M: MENUBAR

T: TOOLBAR

W: WORDCOUNTBoth M and T false, constraint not satisfied 

Non-unique trace, same as 100 

Test only calls createToolBar() 
which is empty in both 
configurations.



Example

With SPLat :

3 Optional Variables = 8 configurations  3 configurations!

MTW = 000 
MTW = 001

MTW = 100 
MTW = 101

MTW = 010
MTW = 110

MTW = 011
MTW = 111

M: MENUBAR

T: TOOLBAR

W: WORDCOUNTBoth M and T false, constraint not satisfied 

Non-unique trace, same as 100 



Technique

1) Run initial instance of a test for the SPL

2) Set features
● Mandatory features - true
● Optional features - true or false. Defaulted to false

3) Explore, backtrack, and explore more
● New features are pushed onto a stack as they are encountered

4) Prune invalid configurations until exploration is done

Main Algorithm Overview:



Technique

1) Define a stack to hold unexplored features

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT

0 : False

1 : True

- : “don’t care”

T

Applied Example - Notepad:

2) Run an initial test and gather set of partial 
assignments 

T is encountered first, push it on to the stack

Stack: [T]

Set T=0 → MTW = -0- 



Technique

3) Explore initial set of assignments

Explore MTW=-0-:

Recognize that MTW=00- is invalid → 

Two combinations eliminated!

Assert MTW=10-: valid

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT

0 : False

1 : True

- : “don’t care”

T

Applied Example - Notepad:



Technique

4) Bubble up and explore alternate path of 
configurations

Set T=1,  explore path (MTW=-1-):

 Next, we encounter W. Push W. (Stack: [W, T])

MTW=-10: valid

MTW=-11: valid

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT

0 : False

1 : True

- : “don’t care”

Applied Example - Notepad:

T

WT



Technique

5) Pop out fully explored features
W & T have been fully explored at this point

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT

0 : False

1 : True

- : “don’t care”

Applied Example - Notepad:

T

W

Pop W. 

Pop T. 

Stack is empty, end SPLat



Technique

6) Collect results

MTW=10-, MTW=-10, and MTW=-11 are all covered in 3 test executions

Thus, 6 feasible combinations were fully explored in 3 configurations!

M: MENUBAR

T: TOOLBAR

W: WORDCOUNT

0 : False

1 : True

- : “don’t care”

Applied Example - Notepad:



Evaluation

● RQ1: Compare with other methods

● RQ2: Overhead?

● RQ3: Scale to industry code?



RQ1 & RQ2: Experiment on SPL
● 10 software product lines (SPLs) as test subjects

● Comare with:
● Naive approach: run on all valid configurations

○ NewJVM: spawn a new JVM for each test run
○ ReuseJVM: require an explicit reset function

● Static approach:
○ SRA (Static Reachablility Analysis): determine 

reachable configurations by static analysis

JVM: Java Virtual Machine
Required for running Java
Consumes time to create

No comparison with other 
dynamic approaches!





Efficiency

NewJVM vs. ReuseJVM:

Reusing JVM saves time



Efficiency

NewJVM vs. ReuseJVM:

Reusing JVM saves time

ReuseJVM vs. SPLat:

SPLat reduces time when #Confs 

is reduced



SPLat vs. SRA

SPLat is more precise:

SPLat.Confs < 

SRA.Confs

SPLat is more efficient:

SPLat.Overhead

< SRA.Overhead;

SPLat.IdealTime

< SRA.Time

Answer to QR1: 
comparison

SPLat is more efficient 
than ReuseJVM and SRA

SPLat prunes 
configurations faster 
and more precisely than 
SRA



Answer to QR2: Overhead

Large relative overhead for 
short tests (LOW)

Small for long tests (HIGH)

→ Can save total time even 
with large overhead



RQ3: Test on Groupon codebase
● Groupon PWA: 

○ >171K lines of Ruby code

○ >170 (boolean) feature variables → 2170 configurations

○ Test code: >231K lines

○ >19K Rspec tests, each under one configuration

● Apply SPLat:

○ Allow varying features 

→ #Configurations each test covers? (upperbound 16)

→ #Features each test encounters?



RQ3: Test on Groupon codebase

Answer to RQ3:
SPLat can scale to large industrial code
with low implementation cost

Critiques:
● Introduced upperbound (16) for #configs to simplify the problem
● Assumed no constraints among features
● Didn't report time cost

The maximum is 43: << 170

"17" means >16

#Configs << 2170

Total:
>170 features
>19K tests



Discussion

Question 1:

How do the previously mentioned critiques affect the 
validity of SPLat scaling to large codebases?



Discussion

Question 2:

Can SPLat scale to non-boolean variables? How?



Discussion

Question 3:

What will SPLat do if a feature is encountered but its code 
has no effect?



Discussion

Question 4:

Can you think of any potential optimization to improve the 
efficiency of SPLat?



Discussion

Question 5:

What needs to be done to apply SPLat to an SPL program?
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Thank you!


