
Are Mutants a Valid Substitute
for Real Faults in Software

Testing?

Authors: René Just, Darioush Jalali, Laura Inozemtseva,
Michael D. Ernst, Reid Holmes, Gordon Fraser

presenter name(s) removed for FERPA considerations
March 23 2017

What is a good test suite?

● Good test suite → detects real faults (bugs)

● How is it measured: code coverage

● Problem: Set of all possible faults unknown

● Possible Solution: mutation analysis controlled for code

coverage

What is a Mutant?

Original Source Code
public int fib(int n) {
 if ((n == 0) || (n == 1))

 return n;
 else

 return fib(n - 1) + fib(n - 2);
 }

Mutated Source Code
public int fib(int n) {
 if ((n != 0) || (n == 1))

 return n;
 else

 return fib(n - 1) + fib(n - 2);
 }

Mutants: artificial faults (one variation each) that are systematically introduced into the

program under test

What is Mutation Analysis and Score?
Original Source Code
public int fib(int n) {
 if ((n == 0) || (n == 1))

 return n;
 else

 return fib(n - 1) + fib(n - 2);
 }

@Test // Passes

public void TestFoo() {
AssertEquals(fib(0) == 0);

}

Has no score.

Mutated Source Code
public int fib(int n) {
 if ((n != 0) || (n == 1))

 return n;
 else

 return fib(n - 1) + fib(n - 2);
 }

@Test // Fails

public void TestFoo() {
AssertEquals(fib(0) == 0);

}

Mutation score 100%. We caught the mutant

Research Questions

1. Are real faults coupled to mutants generated by commonly

used mutation operators?

2. What types of real faults are not represented by mutants?

3. Is mutant detection correlated with real fault detection?

Key Idea

Contributions Made by Paper
● Develops

○ Largest study on subject composed of 357 faults, 230K mutants, and test
suites

● Explores
○ Coupling effect between real faults and mutants
○ Correlation between mutation detection and real fault detection
○ Limitations of mutation analysis

Methodology of Experiment

Step 1: Reproduce and Isolate Real Faults

Discard any fault that cannot be reproduced

Reproducible and Isolated Real Faults: Summary

Step 2: Obtain Developer-Written Test Suites

Triggering tests are tests that expose the real fault in V1 while passing on V2

pass fail

Step 3: Automatically Generate Test Suites
Automatically generate test suites using three test generation tools:

● EvoSuite
○ Branch coverage
○ Weak mutation testing
○ Strong mutation testing

● Randoop

● JCrasher

Then, automatically remove all failing or uncompilable tests.

Step 4: Perform Mutation Analysis
● Major mutation framework

○ Create mutant versions and perform mutation analysis

● Only classes that were modified by the bug fix were
mutated

● Major computed mutation coverage and mutation score
for each test suite

Step 5: Conduct Experiments

How were the Experiments Analysed?

● Chi-square test to determine significant association
between mutants and real faults

● Determined the number of real faults to at least one
generated mutant

● Measured the sensitivity of the mutation score to the
detection of a single fault

Results

Are Real Faults Coupled to Mutants Generated By
Commonly Used Mutation Operators?

● 2 mutants are coupled to a single
real fault (on average when
controlled for code coverage)

● The following mutations are more
often coupled to real faults than
other mutants:

○ conditional operator replacement
○ relational operator replacement
○ statement deletion

What types of real faults are not represented by
mutants?

Similar Method called

Algorithmic Modification and simplification

Statement Deletion

Is mutant detection correlated with real fault
detection?
● Mutation score ≈ real fault detection rate (most of the time)
● Some faults cannot be represented by mutants
● Mutant detection → positively correlated with real fault detection

Conclusions

● Recall: Are mutants a valid substitute for real faults in software
engineering?

● Conclusions:
○ Yes, most of the time, mutants are a valid substitute for real faults in

software engineering
○ Some real faults, however, are not represented by mutants

● Therefore:
○ Mutants can aid in fixing bugs in code, but will still require human effort

Discussion Questions

Would adding conditional mutant operators (if-else) help
strengthen mutation analysis and its relation to real faults?

Do test suite minimization approaches that control for
mutation scores retain their real fault detection effectiveness

or does it decrease/increase? Why?

Do algorithms used for fault localization and automatic
program repair that are evaluated based on mutation scores

perform just as well on real faults?

Is the correlation between mutants and real faults the same in
low level languages as it is in high level languages such as

Java?

Are the 27% of real faults that are not coupled to mutants a
part of the real faults that are not coupled to code coverage or

do these two approaches find correlation between different
real faults?

