
Apps

Which one?

Good? Bad?

Malware?

Malware Detection - Current Standard

Check Static Code & dynamic behaviour
against patterns of malicious behaviour

New Threats?

Context Matters?

Context Matters?

● An app sending text messages to raise money suspicious?

● An app that tracks location malicious?

● An app collects and sends contact info to server malicious?

Yes, Context Matters!

● An app sending text messages to raise money suspicious?

Android uses this method as legitimate payment method for game features!!!

● An app that tracks location malicious?

A navigation or map application needs to use this feature!

● An app collects and sends contact info to server malicious?

Whatsapp!! This is exactly what it does upon initialization!!

Malware Detection - Current Standard

Does Static Code & dynamic behaviour
match patterns of malicious behaviour?

Does the program
behave as advertised?

CHABADA
(CHecking App Behavior Against

Description of Apps)

Alessandra Gola, Illaria Tavecchia, Florian Gross, Andreas Zeller
Saarland university, Germany

presenter name(s) removed for FERPA considerations

Contribution

● CHABADA
○ A new technique to detect malware by checking implemented

behavior against advertised behaviour in the Android domain.

● Evaluation of CHABADA
○ Can this technique effectively identify anomalies (mismatches

between description and behaviour)?
○ Can the technique be used to identify malicious Applications?

GOOGLE PLAY DESCRIPTIONS API USAGE

CHABADA Approach - Quick Overview

● Start with a collection of
22,500+ “GOOD” Android
applications downloaded from
Google Play store

CHABADA Approach - Quick Overview

● Using Latent Dirichlet
Allocation (LDA) on app
descriptions, identify the
main topics for the each
application.

CHABADA Approach - Quick Overview

● Cluster the applications
by related topics.

CHABADA Approach - Quick Overview

● In each cluster, identify
the APIs each app
statically accesses.

CHABADA Approach - Quick Overview

● Using unsupervised
One-Class SVM anomaly
classification, identify
outliers with respect to
API usage.

Example

Key Ideas
Step 1: Form the set of Android apps and features

● An automated script ran at regular intervals
during the Winter and Spring of 2013 to
download apps.

● For each of the 30 categories in the Google
Play Store, the top 150 free apps in each
category were downloaded.

● Total of 32,136 apps

Key Ideas

Step 1: Form the set of Android apps and features

● Several NLP methods used.
● All text not in English removed using Google’s

Compact Language Detector.
● Stop words (e.g. “the”, “is”, “at”) removed.
● Stemming (reducing words to their root)
● Non-text items such as numerals, HTML tags,

email addresses removed.
● All apps that do not use sensitive APIs (APIs that

are governed by an Android permission setting)

Key Ideas
Step 2: Topic Modeling

● Uses a probabilistic model named Latent
Dirichlet Allocation (LDA) on the app descriptions
and identifies the main topics (e.g. “weather”) for
each app.

● Using LDA, apps are assigned to one or more
topics with certain probabilities.

● CHABADA chose 30 as the number of topics,
same as categories in the Play Store.

Key Ideas

Step 2: Topic Modeling

Key Ideas
Step 3: Clustering

● Next step is to identify groups of applications
with similar descriptions.

● Done using the K-means clustering algorithm.

● K-fold validation is used to find the best
number of clusters.

● It uses the elements silhouette score for
comparison.

Key Ideas
Step 4: Identify the sensitive APIs used by the app

● Static API usage is considered as a proxy for behavior.

● For each app, the binary APK file is extracted with apktool6.

● API invocations extracted using smali disassembler.

● To obtain the set of sensitive APIs, the paper relies on the
work of Felt et al.

● Why only use sensitive apis for analysis? Overfitting

Key Ideas
Step 5: Identify Outliers

● Using Machine Learning technique of One-Class SVM,
outliers with respect to API usage identified.

● With the sensitive APIs as binary features, OC-SVM
trained within each cluster to model which APIs are
commonly in that cluster.

● For each cluster, produces a ranked list of apps where
the top apps have the most abnormal API usage.

Evaluation

RQ1
Can this technique (CHABADA) effectively identify
mismatches between description and behaviour in

Android applications?

RQ2
Can CHABADA be used to identify malicious Android

applications?

Evaluation - RQ1

● Perform k-fold validation 22521 apps that were grouped into 32
clusters

● The process uncovered outliers and the top 5 outliers in each cluster
was selected for examination.

● Thus 160 total applications had been flagged by CHABADA as being
suspicious were to be examined

● The examination had to be done manually by comparing app
descriptions with actual source code

Evaluation - RQ1
● After the examination, the outliers were put into

the 3 categories:

● Malicious apps: Apps who used sensitive APIs
that were not advertised and more importantly
these APIs were used against the interests of
users

Evaluation - RQ1

● After the examination, the outliers were put into

the 3 categories:

● Dubious apps : Used sensitive APIs that were not
clearly advertised but their use of sensitive APIs
did not go against the user’s interest. Yahoo Mail
was found to be among these because it uses the
SMS API which was not advertised.

Evaluation - RQ1

● After the examination, the outliers were put

into the 3 categories:

● Benign apps: Descriptions clearly matched
the use of sensitive APIs in the source
code.However apps that had inadequate
descriptions on the Play Store also fell into
this category

Evaluation - RQ1 Results
● As displayed in the table below, this examination resulted in identifying 42

outliers that were malware.This was a shocking 26% of the flagged
applications. This was alarming because the researchers chose the top 150
downloaded apps from each category of the Google Play store

Evaluation - RQ2

● The One Class Support Vector Model which used in cases where there exists
many samples of good data and fewer samples of anomalies or bad data.

● A large set of benign apps were used in this case. They consisted of apps
that were not flagged in the first experiment and those that were flagged but
were confirmed to be benign

● The One Class Support Vector Model was then going to be used as a
classifier. It was trained on 90% of the benign apps

Evaluation - RQ2

● Then with the remaining 10% of benign apps, a
set of 172 known malware were added to it. This
was going to be the testing set. The OC-SVM
was used as a classifier on this testing set.

● Essentially CHABADA, was presented with the
problem of identifying malware without knowing
previous malware patterns.

Evaluation - RQ2 Results
● The result as displayed in the table below showed that 56% of malicious

applications were detected

● The result may not seem very impressive compared to standard malware
detectors but we have to bear in mind that standard malware detectors use
known malware patterns whiles CHABADA is able to detect malware without
knowing pre-existing malware patterns

Limitations
● Only free apps were used implying that results is biased towards app that rely

on ads and in-app purchases to generate income

● App and malware bias: The sample used was from the top 150 downloads
from each category on the Google Play Store. And as a matter of fact,this list
of top downloads keeps changing. Thus, the selection of malware may not be
representative of current threats.

● Sensitive APIs: The detection of sensitive APIs relies on a mapping provided
by research that was published two years before the CHABADA experiment.
Hence, the classification of sensitive APIs is likely to be obsolete

Conclusion

Even though CHABADA is not perfect, in practice CHABADA will work well by
complementing standard malware detectors by specifically detecting unknown
malware patterns.

Discussion Questions

Chabada works in Google Play domain. Can it perform just
the same in other domains?

Discussion Questions

What was the main difference between the two experiments
performed in evaluating the effectiveness of CHABADA?

Discussion Questions

How can CHABADA be used to make sure benign or
harmless apps remain harmless?

Discussion Questions

CHABADA relies on evaluating static API usage, do you
think this approach works well?

Discussion Questions

Can CHABADA categorically determine whether an app is
good or malicious?

