act of a Software Life

Not just “a”.....

. e i,
e 3 - & 4
3 - Y - A .
y X Blal, o K
&4 .. \ e
. . % e C R
o 7 C)
g & I8 . ; / ’ 2 Sl
B S s - ~Z - e
P P e | RO e
PR Kag S W gt
W) A -
’-‘:‘ o 'Q L8 i)
3 v o
<
% -

Windows 2000 shipped with more
than 63,000 KNOWN bugs

In 2005, almost 300 bugs were
appearing daily in Mozilla, according
to one of its developer

Manual Repaire

Not just “a”

s’ -
- -
S ‘r 1 Y i
& ’,~ - f -
N TS N - ”,
X ' ®
B, B
FER S e .
.~ . N -
2 -

Windows 2000 shipped with more
than 63,000 KNOWN bugs

In 2005, almost 300 bugs were
appearing daily in Mozilla, according
to one of its developer

Manual Repaire

Automatic Repair!

GenProg (one of several others)

1918 if (lhs DBL_MRK) 1lhs = ...;

1919 if (lhs == undefined) {

1920 lhs strings[getShort (iCode, pc + 1)];

1921)

1922 Scriptable calleeScope = scope;

(a) Buggy program. Line 1920 throws an Array Index Out of Bound exception when

getShort (iCode, pc + 1) isequalto or larger than strings.length
or smaller than 0.

O

= DBL_MRK) lhs = ...;
== undefined) {
((Scriptable) lhs) .getDefaultValue (null) ;

\O

L O W =
WO WO O\
[NS NC I O

O

N = O W o
o<

table calleeScope = s«

(b) Patch generated by GenProg.

Automatic Repair

GenProg (HW!)

DBL_MRK) 1lhs
undefined)
strings[getShort (i

1921)
1922 Scriptable calleeScope = scope

(a) Buggy program. Line 1920 throws an Array Index Out of Bound exception when
getShort (iCode, pc + 1) isequalto or larger than strings.length
or smaller than 0.

1918 DBL_MRK) lhs = ...;

1919 undefined) { é

1920+ Scriptable) lhs) .getDefaultValue (null) ; = .

1921 L N [N \

1922 Scriptable calleeScope = scope; " (/ NN <X i ‘, a
‘ |) s

(b) Patch generated by GenProg. A
s l.-..-..'g?'TsN 23T jac 3 m//

presenter name(s) removed for FERPA considerations

Automatic Patch Generation
Learned from
Human-Written Patches

DONGSUN KIM, JAECHANG NAM,
JAEWOO SONG, AND SUNGHUN KIM

Hong Kong University of Science and technology, China

Pattern-based Automatic Program
Repair (PAR)

Manual Observations on Human Written Patches
Fix Patterns!

PAR
Fix Patterns -> Fix Templates -> Automatic Patches

Empirical Evaluation
Test PAR on 119 Real Bugs

Manual Observations of Human
Written Patches

Patch Collection — 62,656 human written patches from Eclipse JDT
Common Patches Mining
|ldentify patches as additive, subtractive, or altering

Examine root causes of bugs & how patches specifically resolved the
bugs

3561 public ITextHover getCurrentTextHover() ({
3562+ if (fTextHoverManager== null)
3563+ return null;

3564 return fTextHoverManager.ge:CurrentTextHovek();
3565 }

Group similar patches into common patterns

Common Fix Patterns!

Top eight patterns cover almost 30% of all patches observed!

TABLE I Common fix pamrns identified from Eclipse JDT’s patches.

Altering method parameters
Calling another method with the same parameters
Calling another overloaded method with one more parameter

Changing a branch condition
Adding a null checker

Initializing an object
Adding an array bound checker
Adding a class-cast checker

Common Fix Patterns!

Pattern

Altering method
parameters

Calling another method
with the same parameters

Changing a branch
condition

Example

obj.method(v1,v2) ->
obj.method(vl, v3)

obj.method1(param) ->
obj.method2(param)

If (0 ==Db) >
fa==b && c |=0)

Description

Pattern gives the
appropriate parameters to
the method

Pattern changes the callee
in a method call statement

Pattern modifies branch
condition in conditional
statements. Often just add
orremove a ferm to/from a
predicate

PAR — In Action

1) Identfifies fault locations

(
(2) Uses fix templates to generate program variants
(

3) Evaluates program variants by fithess function (computes number of
passing tests of patch candidate)

(4) If candidate passes all tests, then SUCCESS!
ELSE Repeat (2) & (3)

By : Fault Fix Patch ' Repaiisd
Program - = Location Template Candidate : Program

- |4 e=cll B T | Pass -
= ' 3 Scriptablg - . — 4 T
| p: 5 e\ v'Accept .

(a) Fault = (b) Template-based : (¢) Patch Evaluation
Localization - Patch Candidate Generation

PAR

Algorithm 1: Patch generation using fix templates in PAR.

Input : fitness function Fit: Program — R

Input : 7: a set of fix templates

Input : PopSize: population size

Output: Patch: a program variant that passes all test cases

let Pop < initialPopulation (PopSize) :
repeat

let Pop « apply (Pop,T):

let Pop < select (Pop,PopSize Fit) ;
until 2 Patch in Pop that passes all test cases:;
return Patch

S

-,
Repiiirany
PEIRIE RNy
gMtettean

B

Fault Localization

» Statistical fault localization based on test cases

» Assumes that a statement visited by failing tests is more likely to be a
defect than other statements

» (1) Executes two groups of tests: passing and failing

» (2) Records the statement coverage of both test case groups
» (a) Covered by both groups
» (b) Covered only by Passing group
» (c) Covered only by Failing group
» (d) Not covered by either group

Assign a value of 0.1 to statementsin (a), 1.0 fo (c), 0.0 otherwise

Fix Template

[Null Pointer Checker]
2 P = program
B = fault leccation

<AST Analysis L4
C ¢« collect object references (method invocations,
field accesses, and qualified names) of B in P
8 <Context Check>
) 1f there is any object references in C = continue
otherwise = stop
<Program Editing>
3 insert an if() statement before B °
objects in C
a conditional expr checks whether a
given object is null
if B incl return statement |
negate the concatenated conditional expre °

_t value

53¢
ent that returns a f

insert

THEN section of the if () S‘utwmtnt
B after the if() statement

into
insert

} else |
insert B into THEN section

26)

of the if() statement

Fig. 4. Null pointer checker fix template. This template inserts an if () statement
checking whether objects are null.

AST Analysis — Scans program’s AST
and analyzes fault location and
adjacent location

Context Check — Examines whether
the program can be edited by a
template by inspecting the
analyzed AST

Program Editing — If possible, rewrite
the program’s AST based on the
script in the template

Fithess Evaluation

Fitness Function

(Program variant, test cases) ->
Compute value representing the
number of passing test cases of the
variant

Resulting fithess value used for
evaluating and comparing program
variants in a population

Based on fithess values of program
variants, PAR chooses program
variants by fournament selection

Examples:

(a) Buggy Program: the undeTﬁned statement is a fault location.
<Null Pointer Checker>
INPUT: state.parens[i] .length = 0;
. Analyze: Extract obj refer 2 state, state.parens|[i]
. Context Check: object references?: PASS
. Edit: INSERT

OUTPUT: a new program variant

e
01 if (kidMatch != return kidMatch;

02 ¥ S5 1)

03

04+ if(state != null && state.parens|i] != null)

05 state.parens[i].length = 0;

06

07 state.parenCount = num;

(b) After applying a fix template: a patch generated by PAR. As shown in the fix template.
corresponding statements have been edited.

Fig. 5: Real example of applying a fix template to Nat iveRegExp. java to fix Rhino
Bug #76683.

Examples:

1918 i lhs == DBL_MRK) 1lhs = ...;
1919 if (lhs undefined) {

1920 l1hs strings[getShort (iCode, pc + 1)];
1921)

1922 Scriptable calleeScope = scope;

(a) Buggy program. Line 1920 throws an Array Index Out of Bound exception when

getShort (iCode, pc + 1) isequaltoor larger than strings.length
or smaller than 0.

£ (1hs: == BBIL: MRK) :lhs =: i3s3
if (lhs == undefined) {
lhs = ((Scriptable)lhs).getDefaultValue (null);

O

e S S SR
O O
NN ==

\O
N = O W o
+

\O

criptable calleeScop scope;

(b) Patch generated by GenProg.

e

(/ﬁ\ - = N Ry \E ARNS
! c“s,éh :]

I===r'm Ten 231 F jac 3 m_@_:%/j;
. /

Examples:

261G
13210

(lhs == DBL_MRK) 1lhs =

i
1919 if (lhs == undefined) {

1920+ if (getShort (iCode, pc + 1) < strings.length &&
getShort (iCode, pc + 1) >= 0)

-/

strings[getShort (iCode, pc + 1)1];

calleeScope = scope;

(d) Patch generated by PAR.

Evaluation of PAR

» Two Research Questions

» RQI1: (Fixability) How many
bugs are fixed successfullye

» RQ2: (Acceptability) Which
approach can generate more
acceptable bug patchese

Experimental Design

TABLE III: Data set used in our experiments. “LOC” (Lines of code) and “# statements™
represent the size of each subject. “# test cases™ is the number of test cases used for
evaluating patch candidates generated by PAR.
Subject |# bugs LOC # statements # test cases Description
Rhino 17 51,001 35.161 5,578 interpreter
Aspect] 18 180,394 139,777 1,602 compiler

logdj 15 27,855 19.933 705 logger

Math 29 121,168 80,764 3,538 math utils

Lang 20 54,537 2,051 helper utils
Collections 20 48,049 11,577 data utils

483,004 351.406

Collected 119 bugs from
open source projects

Applied both PAR and
GenProg to each bug o
generate patches

Examined how many bugs
were successfully fixed by
each (RQ1)

Conducted user study to
compare patch quality
(RQ2)

Experimental Design

All six projects written in Java

All six projects commonly used in literature and have well
maintained bug report

Randomly selected 15-29 bugs per project
For each bug collected all available test cases

Conducted 100 runs for each bug per approach. Total runs (100
*119 * 2 =123,800)

Each run stopped when it took more than 10 generations or 8
hours, which meant it failed at creating a successful patch.

RQ1 Fixability

TABLE IV: Patch generation results. Among 119 bugs. PAR successfully fixed 27 bugs
while GenProg was successful for only 16 bugs. Note that 5 bugs were fixed by both
approaches. We used these 5 bugs in our comparative study for acceptability evaluation.

Subject # bugs | # bugs fixed # bugs fixed # bugs fixed
by GenProg by PAR by both

Rhino
Aspect]
log4j
Math
Lang
Collections

Total

PAR 27 GenProg 16

5 bugs fixed by both but patch for
each were different. To be used
for RQ2

Fix patterns were generated from
Eclipse JDT but applied to bugs of
other projects

Only used limited number of fix
patterns. Can improve fixability?

GenProg 10% in Java vs 50% in C?¢

RQ2 (Acceptabllity)

Formulated two null hypotheses

* Hlo: Patches generated by PAR and GenProg have no
acceptability difference from each other.

* H20: Patches generated by PAR have no acceptability difference
from human-written patches.

The corresponding alternative hypotheses are:
 Hla: PAR generates more acceptable patches than GenProg.

 H2o: Patches generated by PAR are more acceptable than
human-written patches.

RQ2 (Acceptability)

Subjects

Two groups (CS students and Developers)

17 software engineering graduate students with Java experience

68 developers (online developer communities and software companies)
Study Design

Five sessions.

One of five bugs per session fixed by both PAR and GenProg

Each session explained bug in detail

Session listed three anonymized patches (human, PAR, GenProg)

Partficipant asked to compare and rank

RQ2 (Acceptabillity)

TABLE V: Average rankings evaluated by 17 students (standard deviation is shown in
parentheses). The lower values indicate that the patch obtained higher rankings on average

by the evaluators.

Math #280
Rhino #114493
Rhino #192226
Rhino #217379
Rhino #76683

Average

Human
1.33 (0.62)
2.00 (0.54)
1.47 (0.64)
1.69 (0.70)
2.13 (0.51)
1.72 (0.67)

2.27 (0.59)
1.33 (0.62)

1.67 (0.62)
1.50 (0.63)
1.07 (0.26)
1.57 (0.68)

GenProg
2.40 (0.83)
2.67 (0.72)
2.67 (0.72)
2.81 (0.40)
2.80 (0.41)
2.67 (0.64)

Result — Students

PAR patches consistently ranked
higher than GenProg patches

Average ranking of PAR patches =
1.57 (SD = 0.68)

Average ranking of GenProg
patches = 2.67 (SD= 0.64)

Ranking differences between Par
and GenProg are statistically
significant (p-value =0.000 < 0.05)

Based on results, reject null
hypothesis H10 for student group

RQ2 (Acceptabllity)

TABLE VI: Average rankings evaluated by 68 developers (standard deviation is shown
in parentheses). The lower values indicate that the patch obtained higher rankings on
average by the evaluators.

Math #280
Rhino #114493
Rhino #192226
Rhino #217379
Rhino #76683

Average

Human
1.92 (0.76)
1.60 (0.63)
2.00 (0.68)
1.62 (0.77)
1.92 (0.64)
1.81 (0.70)

2.00 (0.82)
2.40 (0.74)
1.79 (0.98)
1.69 (0.63)
1.23 (0.43)
1.82 (0.80)

GenProg
2.08 (0.95)
2.00 (0.93)
2.21 (0.80)
2.69 (0.63)
2.85 (0.38)
2.36 (0.90)

Result — Developers

Similarly PAR ranked higher than
GenProg patches except one

Average ranking of PAR patches =
1.82 (SD = 0.80)

Average ranking of GenProg
patches = 2.36 (SD= 0.90)

Ranking differences between Par
and GenProg are statistically
significant (p-value =0.016 < 0.05)

Based on results, reject null
hypothesis H10 for developer group

RQ2 (Acceptabllity)

Results of comparative studies:

PAR patches consistently have higher rankings than GenProg
patches

Results are stafistically significant

Implication? PAR can generate more acceptable patches than
GenProg

Ranking differences not statistically significant between Par and
human written patches

Implication? Patches generated by PAR are comparable to
human written patches

RQ2 (Acceptabllity)

TABLE VII: Indirect patch comparison results. Indirect Patch Compgrison

Selection # response Selection # response

130 (21%) GenProg | 68 (20%) Compare acceptability of all 43
175 (28%) Both 40 (12%)

Human 229 (37%) Human 176 (51%) pOTCheS (27 PAR,]6 GenProg) TO

Not Sure 87 (14%) Not Sure 60 (17%) humg n_Wriﬂ-en pcﬂ'ches
Total 621 (100%) 344 (100%)

(a) PAR comparison results. (b) GenProg comparison results.

Web online Survey

Each session showed anonymized
patches (one human written and one
corresponding PAR or GenProg)

Patches generated by PAR more
acceptable (21% + 28%) than
GenProg patches (20% + 12%)

What about the other 92¢

TABLE \lll Causes of un\uuu\ful pauhu.

92 out of 119 bugs not
pafched

Branch conditions (28%)

Cannot generate predicates
to safisty branch conditions aft
fault locations by using fix
templates

No matching pattern (72%)

Cannot generate a patch
because no fix template has
appropriate editing scripts

Threats to Validity

Systems are all open source projects

Patches of closed-source projects
may have different patterns

Some user studies participants may
not be qualified

Could not verify qualifications of
developers

..Conclusion!

Manually inspected human-written patches and discovered
common fix patterns

Used fix patterns to generate automatic patches (PAR)

Evaluated the patches against GenProg patches and human
written patches

PAR was more successful than GenProg generated 27 successful
patches vs 16 by GenProg. PAR patches comparable to
human-written patches.

Future Work
Automatic fix template mining
Balance test case generation

Questions:

Quiz!
What is the ¢ the answere
What's the key that allows answering ite

How do you the of the answer?

Questions:

Can we identity additiondl
Threats to Validitye

Questions:

Which one do you think is
more efficiente GenProg or
PAR?

Questions:

Patch hunting within program
VS
Patch hunting outside of program

Which Is bettere

Questions:

PAR vs GenProg
Apples to apples comparisone

Sources used:

“*Automatic Patch Generation Learned from
Human-Written Patches” by Kim et al

YAutomatically Finding Patches Using Genetic Programming” by
Weimer et al

“A Ciritical Review of YAutomatic Patch Generation Learned from
Human-Written Patches”: Essay on the Problem Statement and the
Evaluation of Automatic Software Repair” by Martin Monperrus

Several Minions and otherwise images from throughout the web
One slide from Professor Yuriy Brun's class!

