
A Fact of a Software Life

Not just “a”…..

 Windows 2000 shipped with more

than 63,000 KNOWN bugs

 In 2005, almost 300 bugs were

appearing daily in Mozilla, according

to one of its developer

Manual Repair?

Not just “a”…..

 Windows 2000 shipped with more

than 63,000 KNOWN bugs

 In 2005, almost 300 bugs were

appearing daily in Mozilla, according

to one of its developer

Manual Repair?

Automatic Repair!

GenProg (one of several others)

Automatic Repair

GenProg (HW!)

Automatic Patch Generation

Learned from

Human-Written Patches

DONGSUN KIM, JAECHANG NAM,

JAEWOO SONG, AND SUNGHUN KIM

presenter name(s) removed for FERPA considerations

Hong Kong University of Science and technology, China

Pattern-based Automatic Program

Repair (PAR)

 Manual Observations on Human Written Patches

Fix Patterns!

 PAR

Fix Patterns -> Fix Templates -> Automatic Patches

 Empirical Evaluation

Test PAR on 119 Real Bugs

Manual Observations of Human

Written Patches

 Patch Collection – 62,656 human written patches from Eclipse JDT

 Common Patches Mining

 Identify patches as additive, subtractive, or altering

 Examine root causes of bugs & how patches specifically resolved the

bugs

 Group similar patches into common patterns

Common Fix Patterns!

Top eight patterns cover almost 30% of all patches observed!

Common Fix Patterns!

Pattern Example Description

Altering method

parameters

obj.method(v1,v2) ->

obj.method(v1, v3)

Pattern gives the

appropriate parameters to

the method

Calling another method

with the same parameters

obj.method1(param) ->

obj.method2(param)

Pattern changes the callee

in a method call statement

Changing a branch

condition

If (a == b) ->

If(a == b && c != 0)

Pattern modifies branch

condition in conditional

statements. Often just add

or remove a term to/from a

predicate

PAR – In Action

 (1) Identifies fault locations

 (2) Uses fix templates to generate program variants

 (3) Evaluates program variants by fitness function (computes number of

passing tests of patch candidate)

 (4) If candidate passes all tests, then SUCCESS!

ELSE Repeat (2) & (3)

PAR

Fault Localization

 Statistical fault localization based on test cases

 Assumes that a statement visited by failing tests is more likely to be a

defect than other statements

 (1) Executes two groups of tests: passing and failing

 (2) Records the statement coverage of both test case groups

 (a) Covered by both groups

 (b) Covered only by Passing group

 (c) Covered only by Failing group

 (d) Not covered by either group

Assign a value of 0.1 to statements in (a), 1.0 to (c), 0.0 otherwise

Fix Template

• AST Analysis – Scans program’s AST

and analyzes fault location and

adjacent location

• Context Check – Examines whether

the program can be edited by a

template by inspecting the
analyzed AST

• Program Editing – If possible, rewrite

the program’s AST based on the

script in the template

Fitness Evaluation

 Fitness Function

 (Program variant, test cases) ->

Compute value representing the

number of passing test cases of the

variant

 Resulting fitness value used for

evaluating and comparing program

variants in a population

 Based on fitness values of program

variants, PAR chooses program

variants by tournament selection

Examples:

Examples:

Examples:

Evaluation of PAR

 Two Research Questions

RQ1: (Fixability) How many

bugs are fixed successfully?

RQ2: (Acceptability) Which

approach can generate more

acceptable bug patches?

Experimental Design

 Collected 119 bugs from

open source projects

 Applied both PAR and

GenProg to each bug to

generate patches

 Examined how many bugs

were successfully fixed by

each (RQ1)

 Conducted user study to

compare patch quality

(RQ2)

Experimental Design

 All six projects written in Java

 All six projects commonly used in literature and have well

maintained bug report

 Randomly selected 15-29 bugs per project

 For each bug collected all available test cases

 Conducted 100 runs for each bug per approach. Total runs (100

* 119 * 2 = 23,800)

 Each run stopped when it took more than 10 generations or 8

hours, which meant it failed at creating a successful patch.

RQ1 Fixability

 PAR 27 GenProg 16

 5 bugs fixed by both but patch for

each were different. To be used

for RQ2

 Fix patterns were generated from

Eclipse JDT but applied to bugs of

other projects

 Only used limited number of fix

patterns. Can improve fixability?

 GenProg 10% in Java vs 50% in C?

RQ2 (Acceptability)

 Formulated two null hypotheses

• H10: Patches generated by PAR and GenProg have no

acceptability difference from each other.

• H20: Patches generated by PAR have no acceptability difference

from human-written patches.

 The corresponding alternative hypotheses are:

• H1a: PAR generates more acceptable patches than GenProg.

• H2a: Patches generated by PAR are more acceptable than
human-written patches.

RQ2 (Acceptability)

 Subjects

 Two groups (CS students and Developers)

 17 software engineering graduate students with Java experience

 68 developers (online developer communities and software companies)

 Study Design

 Five sessions.

 One of five bugs per session fixed by both PAR and GenProg

 Each session explained bug in detail

 Session listed three anonymized patches (human, PAR, GenProg)

 Participant asked to compare and rank

RQ2 (Acceptability)

 Result – Students

 PAR patches consistently ranked

higher than GenProg patches

 Average ranking of PAR patches =

1.57 (SD = 0.68)

 Average ranking of GenProg

patches = 2.67 (SD= 0.64)

 Ranking differences between Par

and GenProg are statistically

significant (p-value =0.000 < 0.05)

 Based on results, reject null

hypothesis H10 for student group

RQ2 (Acceptability)

 Result – Developers

 Similarly PAR ranked higher than

GenProg patches except one

 Average ranking of PAR patches =

1.82 (SD = 0.80)

 Average ranking of GenProg

patches = 2.36 (SD= 0.90)

 Ranking differences between Par

and GenProg are statistically

significant (p-value =0.016 < 0.05)

 Based on results, reject null

hypothesis H10 for developer group

RQ2 (Acceptability)

 Results of comparative studies:

 PAR patches consistently have higher rankings than GenProg

patches

 Results are statistically significant

 Implication? PAR can generate more acceptable patches than

GenProg

 Ranking differences not statistically significant between Par and

human written patches

 Implication? Patches generated by PAR are comparable to

human written patches

RQ2 (Acceptability)

 Indirect Patch Comparison

 Compare acceptability of all 43

patches (27 PAR, 16 GenProg) to

human-written patches

 Web online Survey

 Each session showed anonymized

patches (one human written and one

corresponding PAR or GenProg)

 Patches generated by PAR more

acceptable (21% + 28%) than
GenProg patches (20% + 12%)

What about the other 92?

 92 out of 119 bugs not

patched

 Branch conditions (28%)

 Cannot generate predicates

to satisfy branch conditions at

fault locations by using fix

templates

 No matching pattern (72%)

 Cannot generate a patch

because no fix template has

appropriate editing scripts

Threats to Validity

 Systems are all open source projects

 Patches of closed-source projects

may have different patterns

 Some user studies participants may

not be qualified

 Could not verify qualifications of

developers

….Conclusion!

 Manually inspected human-written patches and discovered
common fix patterns

 Used fix patterns to generate automatic patches (PAR)

 Evaluated the patches against GenProg patches and human
written patches

 PAR was more successful than GenProg generated 27 successful
patches vs 16 by GenProg. PAR patches comparable to
human-written patches.

 Future Work

 Automatic fix template mining

 Balance test case generation

Questions:

 Quiz!

 What is the scientific question? the answer?

 What’s the key new idea that allows answering it?

 How do you measure the success of the answer?

Questions:

Can we identify additional

Threats to Validity?

Questions:

Which one do you think is

more efficient? GenProg or

PAR?

Questions:

Patch hunting within program

vs

Patch hunting outside of program

Which is better?

Questions:

PAR vs GenProg

Apples to apples comparison?

Sources used:

 “Automatic Patch Generation Learned from

Human-Written Patches” by Kim et al

 “Automatically Finding Patches Using Genetic Programming” by
Weimer et al

 “A Critical Review of “Automatic Patch Generation Learned from

Human-Written Patches”: Essay on the Problem Statement and the

Evaluation of Automatic Software Repair” by Martin Monperrus

 Several Minions and otherwise images from throughout the web

 One slide from Professor Yuriy Brun’s class!

