
A Fact of a Software Life



Not just “a”…..

 Windows 2000 shipped with more 

than 63,000 KNOWN bugs

 In 2005, almost 300 bugs were 

appearing daily in Mozilla, according 

to one of its developer

Manual Repair?
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Automatic Repair!

GenProg  (one of several others)



Automatic Repair

GenProg (HW!)
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Pattern-based Automatic Program 

Repair (PAR)

 Manual Observations on Human Written Patches

Fix Patterns!

 PAR

Fix Patterns  ->  Fix Templates  -> Automatic Patches

 Empirical Evaluation 

Test PAR on 119 Real Bugs



Manual Observations of Human 

Written Patches

 Patch Collection – 62,656 human written patches from Eclipse JDT

 Common Patches Mining

 Identify patches as additive, subtractive, or altering

 Examine root causes of bugs & how patches specifically resolved the 

bugs

 Group similar patches into common patterns



Common Fix Patterns!

Top eight patterns cover almost 30% of all patches observed!



Common Fix Patterns!

Pattern Example Description

Altering method

parameters

obj.method(v1,v2) ->

obj.method(v1, v3)

Pattern gives the 

appropriate parameters to 

the method

Calling another method 

with the same parameters

obj.method1(param) ->

obj.method2(param)

Pattern changes the callee

in a method call statement

Changing a branch 

condition

If (a == b) ->

If(a == b && c != 0)

Pattern modifies branch 

condition in conditional 

statements.  Often just add 

or remove a term to/from a

predicate



PAR – In Action

 (1) Identifies fault locations

 (2) Uses fix templates to generate program variants

 (3) Evaluates program variants by fitness function (computes number of 

passing tests of patch candidate)

 (4) If candidate passes all tests, then SUCCESS!

ELSE  Repeat (2) & (3)



PAR



Fault Localization

 Statistical fault localization based on test cases

 Assumes that a statement visited by failing tests is more likely to be a 

defect than other statements

 (1) Executes two groups of tests: passing and failing

 (2) Records the statement coverage of both test case groups

 (a) Covered by both groups

 (b) Covered only by Passing group

 (c) Covered only by Failing group

 (d) Not covered by either group

Assign a value of 0.1 to statements in (a), 1.0 to (c), 0.0 otherwise



Fix Template

• AST Analysis – Scans program’s AST 

and analyzes fault location and 

adjacent location

• Context Check – Examines whether 

the program can be edited by a 

template by inspecting the 
analyzed AST

• Program Editing – If possible, rewrite 

the program’s AST based on the 

script in the template



Fitness Evaluation

 Fitness Function

 (Program variant, test cases) -> 

Compute value representing the 

number of passing test cases of the 

variant

 Resulting fitness value used for 

evaluating and comparing program 

variants in a population

 Based on fitness values of program 

variants, PAR chooses program 

variants by tournament selection
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Evaluation of PAR

 Two Research Questions

RQ1: (Fixability) How many 

bugs are fixed successfully?

RQ2: (Acceptability) Which 

approach can generate more 

acceptable bug patches?



Experimental Design

 Collected 119 bugs from 

open source projects

 Applied both PAR and 

GenProg to each bug to 

generate patches

 Examined how many bugs 

were successfully fixed by 

each (RQ1)

 Conducted user study to 

compare patch quality 

(RQ2)



Experimental Design

 All six projects written in Java

 All six projects commonly used in literature and have well 

maintained bug report

 Randomly selected 15-29 bugs per project

 For each bug collected all available test cases

 Conducted 100 runs for each bug per approach.  Total runs (100 

* 119 * 2 = 23,800)

 Each run stopped when it took more than 10 generations or 8 

hours, which meant it failed at creating a successful patch.



RQ1 Fixability

 PAR 27   GenProg 16

 5 bugs fixed by both but patch for 

each were different. To be used 

for RQ2

 Fix patterns were generated from 

Eclipse JDT but applied to bugs of 

other projects

 Only used limited number of fix 

patterns.  Can improve fixability?

 GenProg 10% in Java vs 50% in C?



RQ2 (Acceptability) 

 Formulated two null hypotheses

• H10: Patches generated by PAR and GenProg have no 

acceptability difference from each other.

• H20: Patches generated by PAR have no acceptability difference 

from human-written patches.

 The corresponding alternative hypotheses are:

• H1a: PAR generates more acceptable patches than GenProg.

• H2a: Patches generated by PAR are more acceptable than 
human-written patches.



RQ2 (Acceptability) 

 Subjects

 Two groups (CS students and Developers)

 17 software engineering graduate students with Java experience

 68 developers (online developer communities and software companies)

 Study Design

 Five sessions.

 One of five bugs per session fixed by both PAR and GenProg

 Each session explained bug in detail

 Session listed three anonymized patches (human, PAR, GenProg)

 Participant asked to compare and rank



RQ2 (Acceptability) 

 Result – Students

 PAR patches consistently ranked 

higher than GenProg patches

 Average ranking of PAR patches = 

1.57  (SD = 0.68)

 Average ranking of GenProg 

patches = 2.67 (SD= 0.64)

 Ranking differences between Par 

and GenProg are statistically 

significant (p-value =0.000 < 0.05)

 Based on results, reject null 

hypothesis H10 for student group



RQ2 (Acceptability) 

 Result – Developers

 Similarly PAR ranked higher than 

GenProg patches except one

 Average ranking of PAR patches = 

1.82  (SD = 0.80)

 Average ranking of GenProg 

patches = 2.36 (SD= 0.90)

 Ranking differences between Par 

and GenProg are statistically 

significant (p-value =0.016 < 0.05)

 Based on results, reject null 

hypothesis H10 for developer group



RQ2 (Acceptability)

 Results of comparative studies:

 PAR patches consistently have higher rankings than GenProg 

patches

 Results are statistically significant

 Implication? PAR can generate more acceptable patches than 

GenProg

 Ranking differences not statistically significant between Par and 

human written patches

 Implication? Patches generated by PAR are comparable to 

human written patches



RQ2 (Acceptability)

 Indirect Patch Comparison

 Compare acceptability of all 43 

patches (27 PAR, 16 GenProg) to 

human-written patches

 Web online Survey

 Each session showed anonymized 

patches (one human written and one 

corresponding PAR or GenProg)

 Patches generated by PAR more 

acceptable (21%  + 28%) than 
GenProg patches (20% + 12%)



What about the other 92?

 92 out of 119 bugs not 

patched

 Branch conditions (28%)

 Cannot generate predicates 

to satisfy branch conditions at 

fault locations by using fix 

templates

 No matching pattern (72%)

 Cannot generate a patch 

because no fix template has 

appropriate editing scripts



Threats to Validity

 Systems are all open source projects

 Patches of closed-source projects 

may have different patterns

 Some user studies participants may 

not be qualified

 Could not verify qualifications of 

developers



….Conclusion!

 Manually inspected human-written patches and discovered 
common fix patterns

 Used fix patterns to generate automatic patches (PAR)

 Evaluated the patches against GenProg patches and human 
written patches

 PAR was more successful than GenProg generated 27 successful 
patches vs 16 by GenProg.  PAR patches comparable to 
human-written patches.

 Future Work

 Automatic fix template mining

 Balance test case generation



Questions:

 Quiz!

 What is the scientific question? the answer?

 What’s the key new idea that allows answering it?

 How do you measure the success of the answer?



Questions:

Can we identify additional 

Threats to Validity?



Questions:

Which one do you think is 

more efficient? GenProg or 

PAR?



Questions:

Patch hunting within program 

vs 

Patch hunting outside of program

Which is better?



Questions:

PAR vs GenProg

Apples to apples comparison?
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