Speculative Analysis

Course updates

Project plan assignment due April 11

Midterm next week, April 13
We'll start review today, finish next Tuesday

Homework 4 extended until April 20, 9 AM EDT

Today’s plan

* Brief description of midterm + topics covered

* Lecture on speculative analysis
(last lecture covered by midterm)

What’s the midterm like?

* Some true/false questions
* Some multiple choice questions

* Some reasoning questions

On Tuesday

* we'll do some sample questions

* I'll let you ask questions about midterm topics
* if (more questions)
answer questions
else
talk about software architecture

Topics to be covered

* Dynamic analysis
— Daikon and Purify
» Software development lifecycle

—ad hoc, code and fix, waterfall, spiral, staged,
scrum

* Testing and automated test generation

— revealing domains, Korat, Chronicler and
BugRedux (field failures), SPLat,
mobile testing and recovery, mutation testing,
delta debugging
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Topics to be covered

Software privacy and reliability
— sTile and smart redundancy
Automated Bug Fixing

— redundant methods, GenProg, Par, staged repair,
SemFix, DirectFix, Angelix, ClearView,
app method substitutions, program boosting (crowd)
quality of repair

Speculative Analysis

— Quick fix scout, Crystal, CodeHint,
CodebaseReplication

Refactoring

4/5/17



DECISION MAKING
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Decision making
©00

Implement a new feature?
Incorporate another developer’'s changes?

Fix a bug?
DECISION MAKING

Upgrade a library?
Refactor for code reuse?

Run tests?
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Decision making
©00

Implement a new feature?
Incorporate another developer’'s changes?

Fix a bug?
DECISION MAKING

Developers often make decisions based on experience and intuition.J

Upgrade a library?
Refactor for code reuse?

Run tests?
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Can we predict the future

to help make decisions?




Decision making
ooe

Speculative analysis: predict the future and analyze it

B

current program
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Speculative analysis: predict the future and analyze it

refactor

refactor
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Decision making Quick Fix Scout

[e]e] J )

refactor

refactor
refactor

current program analyze

execute test suite
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Decision making

[e]e] J

refactor

refactor
refactor

current program analyze

execute test suite

inform developer

# of resulting test failures 4/25



Decision making Future: understanding behavior

[e]e] J

Speculative analysis: research questions

P —

Are there domains for which speculative analysis is possible?J

current program

Can speculative analysis be made
computationally feasible?

Can speculative analysis help, and not overwhelm, developers? J

4/25



Quick Fix Scout
©0000

Quick Fix ScoutJ

Collaborators: Kivan¢c Muslu, Reid Holmes, Michael D. Ernst, and David Notkin
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Quick Fix Scout
00000

public class UnresolvableType {
Ll private string name;

= public void setName(String arg) {
name = arg;

3

Eclipse provides Quick Fixes to resolve compilation errors.
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Quick Fix Scout
00000

public class UnresolvableType {

4

e private string name;
(3 Create dass 'string’
= public void se € Create interface 'string
] name = arg & Change to 'Spring' (javax.swing)
} @ Change to 'String’ (java.lang)
@ Change to 'STRING' (javax.print.DocFlavar)
} «* Change to 'StringBuffer' (java.lang)

«* Change to 'StringHolder' {org.omg.COREA)

# Change to 'StringReader’ (java.io)

w Change to StringWriter' (java.io)

3 Create enum 'string’

@ Add type parameter 'string’ to ‘UnresalvableType'
w* Fix project setup...

Press "Crrl+1" to go to original position

But Eclipse can't tell which fix is best. J
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Quick Fix Scout
00000

public class UnresolvableType {

o private string name;

(0) Change to "String’ (java.lang)

(1) Change to "StringBuffer’ (java.lang)

(1) Change to "StringHelder’ {org.omg.CORBA)
(1) Change to "STRING' (javax.print.DocFlavor)
(1) Change to "StringWriter' (java.io)

= public void se
o name = arg

}

(1) Change to 'Spring’ (javax.swing)
(1) ] o a)
(1) Change to "StringReader’ (java.io)

1) Create dass 'string’

(1) Create interface 'string’

(1) Create enum "string’

1) Add type parameter 'siring’ to ‘UnresolvableType'
2) Fixx pr.c-:._.j-ect setup..
S . o s o

2o QP@rr e

We can speculatively apply each fix to find out how many errors remain.
67725




Quick Fix Scout
00000

public class UnresolvableType {
Ll private string name;

public void setName(String arg) {
name = arg;
} ® create dass 'name’
@ Create interface 'name’
} @ Change to 'MA' (javax.print.attribute. standard. MediaSize)
& Change to ‘Mame' (java.util.jar. Attributes)
& Change to 'Mame' (javax.lang.model.element)
@ Change to 'Mame' (javax.naming)
& Change to ‘Mame' (javax. xml.soap)
@ Change to ‘Mamelist' (org.w3c.dom)
& Change to ‘Maming' (ava.rmi)
& Change to ‘Mode' (javax.xml.soap)
@ Change to ‘Mode' (org.w3c.dom)
O create enum name’
@ Add type parameter ‘name’ to 'UnresolvableType'
2@ Add type parameter 'mame’ to 'sethame(String)’
Foxprojectsetp,..

Press "Cul+1" to go to oniginal position

Sometimes, local fixes cannot resolve an error. J
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Quick Fix Scout
00000

public class UnresolvableType {
¥l private string name;

= public void setName(String arg) {
name = arg;
} & (0) UnresolvableType.java: 4: 18: Change 'string’ to 'String’ (java.lang)
& (2) Change to ‘"Node' (org.w3c.dom)
1 & (2) Change to ‘Mame' (javax.naming)
& (2) Change to ‘Maming' (java.rmi)
@ (2) Change to ‘Mame' (javax.xml.soap)
@ (2) Change to ‘Node' javax.xml.soap)
& (2) Change to ‘NameList' (org.w3c.dom)
& (2) Change to Mame' (javax.lang.model. element)
@ (2} Add type parameter 'name’ to 'setiame(String)’
@ (2) Add type parameter 'name’ to ‘UnresolvableType'
& (2) Fix project setup...
C] {2) Create dass 'name’
(1] (2) Create interface ‘name’
(E] (2) Create enum 'name’
@ (2) Change to 'MA' (javax.print.attribute.standard. MediaSize)
{(2) Change to 'Mame' (java.util.jar. Attributes)
Press "Curd+1" to go to original position

Speculation can discover remote fixes that resolve errors. )
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Complex error dependencies
public class ExceptionalObject {

= public void exceptionalMethod() {
throw new MyException();

}

public class SafeObject {
= public void safeMethod() {
try {
ExceptionalObject eo =
new ExceptionalObject();
eo.exceptionalMethod();

} catech (MyException e) {7}

http://quick-fix-scout.googlecode.com
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Complex error dependencies
public class ExceptionalObject {

= public void exceptionalMethod() {
throw new MyException();

}

public class SafeObject {
= public void safeMethod() {
try {

ExceptionalObject eo =

new ExceptionalObject();
eo.exceptionalMethod();
} catch (MyException e) {}

12 Remove catch dause

} jQEREpIaCE catch dause with throws :
Press "Crrl+1" 1o go to original position

http://quick-fix-scout.googlecode.com
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Complex error dependencies
public class ExceptionalObject {

= public void exceptionalMethod() {
throw new MyException();
1

public class SafeObject {
= public void safeMethod() {
try {
ExceptionalObject eo =
new ExceptionalObject();
eo.exceptionalMethod();
} catch (MyException e) {}

JE (0} ExceptionalCbject. java:6: 12: Add throws dedaration to 'exceptiona
(1) Replace catch daus: 'r:\'iﬂ'l throws

2i(1) Remove catch dause !

Press ‘Crl+1" togo to e

http://quick-fix-scout.googlecode.com
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Quick Fix Scout
00000

quick fix

qQUICKTIX quick fix
quick fix
current program analyze

compile

inform developer

# of resulting compilation errors 8/25



Quick Fix Scout
00000

Exploring the future

past version present version future version
of the program of the program of the program
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Quick Fix Scout
00000

Exploring the future

past version present version future version
of the program of the program of the program
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Quick Fix Scout
00000

Exploring the future

past version present version future version
of the program of the program of the program
/
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Continuous development

o compilation [Childers et al. 2003; Eclipse 2011]
@ execution [Henderson and Weiser 1985; Karinthi and Weiser 1987]
e testing [Saff and Ernst 2003, 2004]

@ version control integration [Guimardes and Rito-Silva 2010]
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Quick Fix Scout
00000

Exploring the future

past version present version future version
of the program of the program of the program
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Continuous development

o compilation [Childers et al. 2003; Eclipse 2011]
@ execution [Henderson and Weiser 1985; Karinthi and Weiser 1987]
e testing [Saff and Ernst 2003, 2004]

@ version control integration [Guimardes and Rito-Silva 2010]

Speculative analysis is predictive.
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Crystal
©000000000000

Proactive detection of collaboration conflicts |

Collaborators: Reid Holmes, Michael D. Ernst, and David Notkin

10/ 25



Crystal
0®00000000000

Version-control terminology

Proactive conflict detection applies to both
centralized and distributed version control.

distributed (hg, git) | centralized (cvs, svn)
local commit: commit save
incorporate: pull and push update and commit

11/ 25
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The Gates conflict
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The Gates conflict
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Crystal
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The Gates conflict

The information was all there, but the developers didn't know it.J -
1 5




Crystal
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What could well-informed developers do?

e avoid conflicts

13/ 25



What could well-informed developers do?

Tab

e avoid conflicts

Th 2 e become aware of conflicts earlier

13/ 25



Crystal
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Introducing Crystal: a proactive conflict detector

DEMO

14 /25


http://crystalvc.googlecode.com

Crystal
0000@00000000

Introducing Crystal: a proactive conflict detector

DEMO

~ B
® Crystal - George Lo | B

File About

master Paul Ringo John

e/ TR D

b

master Jeff Roy Bob  Tom

Handle
with Care ‘k $ k
clion: hg fetch
Consequences: new relationship will be AHEAD
Commilters: George and Tom

http://crystalvc.googlecode.com

14 /25
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Decision making Quick Fix Scout Crystal Future: understanding behavior

) 0000080000000

current program analyze
merge

compile
test

inform developer

collaborative relationships

15/ 25



Crystal
000000@000000

Reducing false positives in conflict prediction

Collaborative awareness

e Palantir [Sarma et al. 2003] e CollabVS [Dewan and Hegde 2007]
o FASTDash [Biehl et al. 2007] @ Safe-commit [Wloka et al. 2009]
o Syde [Hattori and Lanza 2010] @ SourceTree [Streeting 2010]

16 / 25



Crystal
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Reducing false positives in conflict prediction

Collaborative awareness

e Palantir [Sarma et al. 2003] e CollabVS [Dewan and Hegde 2007]
o FASTDash [Biehl et al. 2007] @ Safe-commit [Wloka et al. 2009]
o Syde [Hattori and Lanza 2010] @ SourceTree [Streeting 2010]

Crystal analyzes concrete artifacts,
eliminating false positives and false negatives.

16 / 25



Crystal
0000000000000

Utility of conflict detection

@ Are textual collaborative conflicts a real problem?
@ Can textual conflicts be prevented?

@ Do build and test collaborative conflicts exist?

17 /25



Crystal
00000000@0000

Are textual collaborative conflicts a real problem?

histories of 9 open-source projects:

size: 26K-1.4MSLoC
developers: 298
versions: 140,000

Perl5, Rails, Git, jQuery, Voldemort,
MaNGOS, Gallery3, Samba, Insoshi

v
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Are textual collaborative conflicts a real problem?

histories of 9 open-source projects:

size: 26K-1.4MSLoC
developers: 298
versions: 140,000

Perl5, Rails, Git, jQuery, Voldemort,
MaNGOS, Gallery3, Samba, Insoshi

S
\’(‘I) Y
|9

Sd4dZ2mnm3is4dzmnn3is4qaz
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Are textual collaborative conflicts a real problem?

How frequent are textual conflicts?

Sd42mnm3ds4dz2n3s4az
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Are textual collaborative conflicts a real problem?

How frequent are textual conflicts?

16% of the merges have textual conflicts.

Sd42mnm3ds4dz2n3s4az
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Are textual collaborative conflicts a real problem?

o
M How frequent are textual conflicts?
T :
W \ 16% of the merges have textual conflicts.
Th
F ) How long do textual conflicts persist?
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Are textual collaborative conflicts a real problem?

o
M How frequent are textual conflicts?
T :
W \ 16% of the merges have textual conflicts.
Th
F ) How long do textual conflicts persist?
'\TA > Conflicts live a mean of 9.8 and median of 1.6 days.
W The worst case was over a year.
Th
E /
M
T
w
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Are textual collaborative conflicts a real problem?

o
\?5 How frequent are textual conflicts?
5 16% of the merges have textual conflicts.
) How long do textual conflicts persist?
t Conflicts live a mean of 9.8 and median of 1.6 days.

The worst case was over a year.

How long do textually-safe merges persist?

Sd42mnm3ds4dz2n3s4az

3
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Are textual collaborative conflicts a real problem?

How frequent are textual conflicts?

16% of the merges have textual conflicts.

How long do textual conflicts persist?

Conflicts live a mean of 9.8 and median of 1.6 days.
The worst case was over a year.

Textually-safe merges live a mean of 11.0 and
median of 1.9 days.

T
O
b}
5
\ﬁ How long do textually-safe merges persist?

Sd42mnm3ds4dz2n3s4az

18 /25
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Can textual conflicts be prevented?

Where do textual conflicts come from?

19 /25
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Can textual conflicts be prevented?

Where do textual conflicts come from?
93% of textual conflicts developed from safe merges.

b 13
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Can textual conflicts be prevented?

Where do textual conflicts come from?
93% of textual conflicts developed from safe merges.

b 13

The information Crystal computes can help prevent conflicts. )

4
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Crystal
0000000000800

Do build and test collaborative conflicts exist?

roeram conflicts safe
progra textual | build | test | merges
Git 17% | <1% | 4% 79%
Perl5 8% 4% | 28% 61%
Voldemort 17% | 10% | 3% 69%

Does merged code fail to build or fail tests?
One in three conflicts are build or test conflicts.

20 / 25



Crystal
0000000000080

Microsoft Beacon

@ A centralized version control-based tool.

@ Microsoft product groups are using Beacon to help identify conflicts
earlier in the development process.

@ Measure Crystal's effect on conflict frequency
and persistence

o Evaluate qualitative effects on user experience
o Identify what helps and what does not

Additional collaborators: Kivan¢c Muslu, Christian Bird, Thomas Zimmermann
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Contributions of speculative analysis

past version present version future version
of the program of the program of the program
. e oA s} [S) Ry
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Improving developer awareness when making decisions

@ compute precise, accurate information

@ convert a pull mechanism to a push one

22 /25



Future: understanding behavior
000

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions
o informative, efficient analyses

@ inferable developer intent

Next speculations:

@ automated fault removal
@ code parallelization

@ test generation and augmentation

23 /25



Future: understanding behavior
000

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

o informative, efficient analyses

@ inferable developer inter‘;

Adobe Acrobat Updater =8 ®

R Adobe Acrobat is installing new updates
p Time remaining

Next speculations:

@ automated fault removal
@ code parallelization

@ test generation and augmentation
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Future: understanding behavior
000

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

o informative, efficient analyses

@ inferable developer inter‘;

Adobe Acrobat Updater =8 %
R Adobe Acrobat is installing new updates
p Time remaining: 20 seconds
. |

Next speculations:

@ automated fault removal
@ code parallelization

@ test generation and augmentation
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Future: understanding behavior
000

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

o informative, efficient analyses

@ inferable developer inter‘;

Adobe Acrobat Updater =8 %
R Adobe Acrobat is installing new updates
p Time remaining: 10 seconds
E— |

Next speculations:

@ automated fault removal
@ code parallelization

@ test generation and augmentation
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Future: understanding behavior
000

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

o informative, efficient analyses

@ inferable developer inter‘;

Adobe Acrobat Updater =8 ®

R Adobe Acrobat is installing new updates
p Time remaining: 40 seconds

| | — |

Next speculations:

@ automated fault removal
@ code parallelization

@ test generation and augmentation
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Future: understanding behavior
000

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

o informative, efficient analyses

@ inferable developer inter‘;

Adobe Acrobat Updater =8 ®

R Adobe Acrobat is installing new updates
& Time remaining: 2 hours

L

Next speculations:

@ automated fault removal
@ code parallelization

@ test generation and augmentation

23 /25



Future: understanding behavior
000

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

o informative, efficient analyses

@ inferable developer inter‘;

Adobe Acrobat Updater =8 ®

R Adobe Acrobat is installing new updates
p Time remaining: 5 seconds

Next speculations:

@ automated fault removal
@ code parallelization

@ test generation and augmentation

23 /25



Future: understanding behavior
000

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

o informative, efficient analyses

@ inferable developer inter‘;

Adobe Acrobat Updater =8 ®

R Adobe Acrobat is installing new updates
p Time remaining: 0 seconds

Next speculations:

@ automated fault removal
@ code parallelization

@ test generation and augmentation

23 /25



Future: understanding behavior
000

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions
o informative, efficient analyses

@ inferable developer intent

Next speculations:

@ automated fault removal
@ code parallelization

@ test generation and augmentation
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Future: understanding behavior
000

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions
o informative, efficient analyses

P Infel’ab & Self-Adapter

A USB driver has stopped working. 1 noticed that installing "Adobe Acrobat
update 9.2.1," led to this problem. T'll swap out the update.

o B 2

Next speculations:

@ automated fault removal
@ code parallelization

@ test generation and augmentation

23 /25



Future: understanding behavior
000

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions
o informative, efficient analyses

@ inferable developer intent

Next speculations:

@ automated fault removal
@ code parallelization

@ test generation and augmentation

23 /25
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Automating decision making: self-adaptation

specification

running system
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specification

running system

generate adaptations

potential
systems
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Future: understanding behavior

Automating decision making: self-adaptation

specification

running system

employ
adaptation

generate adaptations

decide

potential
systems

observe

analysis
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Future: understanding behavior
ooe

Future research: automation

generate adaptations [ ..., |
specification
systems

running system observe

I
wite []

@ Automating decision making: removing the developer
@ Using new automation to enrich speculative analysis

© Bridging requirement specification and behavioral model inference

25 /25
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