3/20/17

Course updates

* Literature review was due today
Repairing Automated Repair * Project plan assignment is posted, due April 11

* Homework 3 due this Thursday, 9 AM EDT
* Homework 4 in posted, due April 6

ﬁ

YR EER o883

ET BT S¥EY S .

BLuNERESE

i 64 Team Single Elimination .
. 65 Team Single Elimination
o » ..
. " Generalizing

a3

532

* How many games are there in a 78-team
bracket?

* What about an n-team bracket?

Winner

s8

) =

Repairing Automated Repair

3/20/17

What do cobras have to do with
automated program repair?

repairing python programs?

the many repair tools

ClearView [Perkinds et al. 2009] GenProg [Weimer et al. 2009]
Prophet [Long and Rinard 2015] SPR [Long and Rinard 2015]
TDS [Perelman et al. 2014]
Par [Kim et al. 2013] AE [Weimer et al. 2013]
SemFix [Nguyen et al. 2013] AutoFix-E [Wei et al. 2010]

[Carzaniga et al. 2010] [Carzaniga et al. 2013]

[Jin et al. 2011] Coker and Hafiz et al. 2013]
[Debroy and Wong et al. 2010] [Lin and Ernst et al. 2004]

[Forrest et al. 2009] [Novark et al. 2007] [Demsky et al. 2006]

Cobra effect

Automated Program Repair

basic idea:

buggy program\

passing tests —

failing tests

APR tool
mutate
evaluate mutants
repeat

—> patched program

Potential problem

buggy program\

passing tests —

failing tests

APR tool
mutate
evaluate mutants
repeat

—> patched program

the patched program may pass all given tests,
but break other functionality

3/20/17

COMPUTE THE
MEDIAN OF THREE
NUMBERS

int median(int a, int b, int c)
int result;
if ((b<=a && a<=c) ||
(c<=a && a<=b))
result = a;
if ((a<b && b <= c¢) ||
(c<=b && b<a))
result = b;
if ((a<c && c<b) ||
(b<c && c<a))
result = c;
return result;

{

result = a;

result = b;

result = c;

result = a;

(b<=a && a<=c)

result = a;

3/20/17

(c<=a && a<=b)
result = a;

((b<=a && a<=c) ||
(c<=a && a<=b))
result = a;
((a<b && b <= c) ||
(c<=b && b<a))
result = b;
((a<c && c<b) ||
(b<c && c<a))
result = c;

int med_broken(int a, int b, int c) {
int result;
if ((a==b) || (a==c) []|
(b<a && a<c) ||
(c<a && a<b))
result = a;
else if ((b==c) || (a<b && b<c) |
(c<b && b<a))
result = b;
else if (a<c && c<b)
result = c;
return result;

(b<a && a<c) ||
(c<a && a<b))

(a<b && b<c) ||
(c<b && b<a))

(a<c && c<b)

(b<a && a<c) ||
(c<a && a<b))

(a<b && b<c) ||
(c<b && b<a))

(a<c && c<b)

int med broken(int a, int b, int c) {

int result;
if ((a==b) || (a==c) ||

000 0 v

(b<a && a<c) || TR X

(c<a && a<b)) 001 0 v
result = a; 010 0 v
else if ((b==c) || (a<b && b<c) g, 1 v
(c<b && b<a)) 023 2 v

result = b;

else if (a<c && c<b)
result = c;

return result;

[Input | Expected | Pass? |

{(b<a && a<e) |

if (b < a)
result = c;

[input | Expected | Pass? |
000 O
2,01 1
001 0
010 O
021 1
023 2

NN N8N XN

int med broken(int a, int b, int c) {

int result;
if ((a==b) || (a==c) []|
(b<a && a<c) ||
(c<a && a<b))
result = a;
if ((b==c) || (a<b && b<c) ||
(c<b && b<a))
result = b;
if (a<c && c<b)
result = c;
return result;

[Input | Expected | Pass? |

268 6 4
2,8,6 v
628 6 v
682 6 v
826 6 X
862 6 v
Rl |9 4

3/20/17

int med broken(int a, int b, int c) {
int result;

SRR PR .. coccc | oss |

(b<a—&& 0,00 0 4

201 1 X

(c<a && a<b)) 001 0 v

result = a; 010 0 v

if (b < a) 021 1 7

result = c; 023 2 v
else if (b<a) (b==c) || (a<b && b<c) ||

(c<b && b<a))
result = b;
else if (a<c && c<b)
result = c;
return result;

int med broken(int a, int b, int c) {

[Input | Expected | Pass? |

int result;

if ((a==b) || (a==c) || — T s

201 1 4

(c<a && a<b)) 001 0 v

result = a; 010 0 v

if (b < a) 021 1 7

result = c; 023 2 v
else if (b<a) (b==c) || (a<b && b<c) ||

(c<b && b<a))
result = b;
else if (a<c && c<b)
result = c;
return result;

int med broken(int a, int b, int c) {
int result;

SRR PR .. | coccc | oss |

(b<a—&& 0,00 0 4
201 1 4
(c<a && a<b)) 001 0 v
result = a; 010 0 v
if (b < a) 021 1 v
result = c; 023 2 v
else if (b<a) (b==c) || (a<b && b<c) ||
(c<b && b<a)) input | Expected | Pass? |
result = b; 268 6 4
else if (a<c && c<b) 286 6 v
result = c; 6,28 6 X
return result; 682 6 4
} 826 6 4
862 6 X
999 9 4

3/20/17

Potential solution Focus of prior evaluations
* Most evaluations are interested in whether tools
work
— produce patches
buggy program\ APR tool * Some interest in other factors
mutate
; — human acceptance of patches
passing tests ——| —> patched program
evaluate mutants patehed prog [Durieux et al. 2015] [Fry et al. 2012] [Kim et al. 2013]
repea
failing tests P — plausibility [Qi et al. 2015]

— ...but these don't fully assess functional correctness

* No evaluations test functional correctness of

Use an independent test suite to measure repair outputs independently of repair inputs

quality of the patch

What do we need? Make your own!
* We need bugs with 2 test suites http://repairbenchmarks.cs.umass.edu
— and the test suites need to be good 998 student-written buggy C programs
Why? — simple (very small)

— have 2 test suites
* white-box (generated by KLEE)

* it’s hard enough to find one good test suite, i :
* black-box (written by instructor)

good luck finding programs with two

Some programs fail some wb tests, others bb
tests, others, some of both

RQ1: RQ1:
What is the base incidence of overfitting? What is the base incidence of overfitting?

but first, how often can we actually generate

Give a repair tool the buggy program and the patches?
black-box test suite, try to repair it, see what
fraction of the white-box tests the patches pass.
GenProg 466/778 = 59.9%
TrpAutoRepair 444/778 =57.1%

3/20/17

RQ1:
What is the base incidence of overfitting?

B100%-

oo —

& 80% .

j2]

5

2 60%

x

o

< 40%

2

S 20%

5

R 0% !

A\

Ge“‘” \o“epa\

RQ2: What effect do pre-repair test
failures have on overfitting?

g
!
&
BV
S AR
'

&
&
'

+

after—repair evaluation passing rate

. -
¥ 8
) 1
S

>

) +
B
" {0 e
R B R
M -
HEEE "y

:

25% 50% 75% 100%
before-repair training passing rate

Programs that fail more tests before repair still fail more tests after repair

RQ2: What effect do pre-repair test
failures have on overfitting?
GenProg -+ TrpAutoRepair

:

-

*

;

%
4
4

P

&

i

25% 50% 75% 100%
before-repair training passing rate

change in evaluation test passing rate

Repair is at best unlikely to improve correctness, at worst likely to worsen it

RQ3: What effect does test suite
coverage have on overfitting?

* Randomly sample 25%, 50%, and 75% of
passing and failing tests for each buggy
program

* Attempt to repair programs
— with each level of test coverage

* If a repair is found, measure correctness of
repair

RQ3: What effect does test suite
coverage have on overfitting?

88 gt

3

&
&
'

¥
'

g

evaluation suite passing rate
5

T v T T 1 T T
25% 50% 75% 100% 25% 50% 75% 100%
available training suite coverage

Lower test suite coverage leads to more overfitting

RQ4: What effect does test suite
provenance have on overfitting?
* So far, all experiments have used human-written
black-box tests to build repairs
* Switch to using KLEE-generated white-box tests
* Attempt to repair programs
* If a repair is found, measure correctness of repair
— this time with black-box tests

3/20/17

RQ4: What effect does test suite
provenance have on overfitting?

GenProg TrpAutoRepair
-100%" 5100%!
[} []
8 80%: 0 8 80%
) 2
8 60%- 2 60%
bot . o
3aon | “f 40% ! hd
§ 1 2 209
£ 20%: L 5 0%
s :
°
£ o% . & o% . l
or ot oot o 0%
‘dag‘(\"o «“\\e” 6\30* \‘“\\e

Automatically generated tests produced significantly buggier repairs
compared to human-written tests

RQ4: Do tools do better than novices?

100%
80%- }—‘- ‘ ° H_'_

60%-

40% L —— L

20%-

% of white-box tests passed

0%~ : ! 1

(0} \\Y A\

Ge“?(o K\““\a \0?@,93
*“QP‘“

Summary

* OQverfitting is a real concern

— median patch for either tool passed only 75% of
evaluation suite

* Overfitting is hard to avoid
— minimization doesn't help on this dataset
— N-version voting only works in extreme cases

* Program repair is harder for buggier programs,
but likely to break more correct programs

* Novice developers don't significantly beat repair
tools

So is there no hope?

* SearchRepair, a brand new technique, reduces
overfitting to 97.2%.

* Most SearchRepair repairs pass 100% of the
held-out test suite.
(Select few poor repairs drop the overall rate.)

Read more about SearchRepair:
http://people.cs.umass.edu/~brun/pubs/pubs/Kel5ase.pdf

