2/28/17

Reproducing Field Failures

Lab Failures

When you are developing a piece of software,
and you run it, use it, and it fails, what do you
do to debug it?

Field Failures

After you have shipped a piece of software, and
a user runs it, uses it, and it fails, what can the
developer do to debug it?

Let’s try something

Describe for me a time your software failed.

Now describe it for me as your grandpa would.

Problems with Field Failures

* Users skip details

* Users describe what went wrong, not what
they did

¢ Users aren’t programmers, so they don’t know
what’s important

* Even if the users are programmers, they didn’t
build system =» don’t know what’s important

What’s worse than a user who doesn’t
know what’s important to report?

A user who “figured out” the system,
understand exactly what the system must be
doing, and is telling you his or her inferences,
not observable effects.

How do we deal with field failures?

* We could record everything that happens at
runtime, ship it back to developers.

What's wrong with this?

2/28/17

How do we deal with field failures?

* For privacy, only send stuff when something
goes wrong.

What's wrong with this?

How do we deal with field failures?

* Anonymize inputs?
* Record sparingly?
* Deduce stuff locally?

* Find alternate inputs that lead to the same
bug?

Let’s back up

* Why worry about field failures?
— Testing is great, but you can’t catch everything
— Software ships with bugs all the time

* Why are field failures hard to debug?
— You don’t know the circumstances

— The environment (other installations, etc.) may
play a role

— Can't rely on the user

Goals

* Capture the steps necessary to replicate a bug
* Generate a test case automatically
* No effort from user

There are some existing techniques
Recrash)

* Monitor a running JVM, record inputs,
method invocations

* If an exception is uncaught, write down the
test case that generated it

* Privacy issues, 20X overhead (sometimes),
deep call stacks cause problems

There are some existing techniques
Scarpe

* Isolate subsystems and monitor what flows in
and what flows out

* Replay exceptions, but only within a
subsystem

¢ Faster but still 20X overhead,
hasn’t been evaluated very well

2/28/17

There are some existing techniques
BugRedux

* Use symbolic execution to guide test generation

* Observe an execution, record constraints that get
you down a path. When an exception happens,
figure out a different input that would follow the
same path

* Better for privacy, but constraint logging has to
be detailed (and slow) or input reconstruction
won’t work + symbolic execution scales poorly

Chronicler

Key idea: deterministic parts of the program are
easy to recreate. It’s the nondeterminism that
causes many bugs.

Nondeterminism: output dependence on factors
other than initial program state and input

What are some nondeterminism examples?

So what kinds of things do we need to watch?

* User input (we'll call that nondeterminism)
— file.read()
— buf.readLine()
— etc.
* Native calls
— System.currentTimeMillis()
— Random()
— etc.

How does Chronicler capture nondeterminism?

Wrap the VM and log at a higher level

Language VM (NET CLR, JVM, etc)
Language API
< ——
[A chronicter A

v \/

\
Outside world (sources of
nondeterminism)

How to use Chronicler

o
Creates Ny
—== p| Application Chronicler er generates
Tostrumented for -
replay
Bug fixed by developer

| rprocucnd mte b

2/28/17

Some implementation details

* Scan the API
— Mark all system methods as nondeterministic
— Mark anything that calls those as nondeterministic
— And propagate the nondeterministic upward

* Record and Replay

— Instrument bytecode to record results of
nondeterministic method calls

— When replaying, simply insert recorded values
— Can even work for GUI events (e.g., swing)

What can this log?

* Nondeterministic event dispatching, (some)
thread switches, GUI events, randomness

* If log gets too big, flush it to a file on disk

When do you write out a test to deliver to the

developer?

In the lab

Implementation strategy

Instrumentation time ——#>

for Depluymmn
v loggmg code
Find every invocation of

‘nondeterministic methods

sintie }_}

(Binary for Replay in Lb)
R:plm with replay code

Copy value at top of stack.

] Application rnming n the Store cloned value and

z feldneedsiong | —| (comp{l)cbljcclz‘:;unmg current \hn‘?:igxdcnuﬁnr o Flush log to disk if full
=

3

2 Bxecution replaying in the Read top value of this Advance pointer to next Advance to next log file if
£ ibnecdstorcadlog | thread's log Tog entry reached the end

tradebeans
tradesoap

Performance (Dacapo benchmark)

Jython
Iuindex
lusearch
pmd
sunflow

tomeat

xalan |
0 20000 40000 60000 80000 100000
Average benchmark time (ms)

Baseline
Chronicler
ReCrashy

120000

What are some Chronicler weaknesses?

* privacy is not addressed
* some threads and processes are not recorded

* Java can do some crazy things, like mutate its
own method’s parameters and use reflection
to redefine a method at runtime

Let’s identify the 3 keys

What is the scientific question?

What's the key new idea that allows answering it?

How do you measure the success of the answer?

Let’s identify the 3 keys

What is the scientific question?
* How to replay field bugs in the lab
What's the key new idea that allows answering it?

How do you measure the success of the answer?

2/28/17

Let’s identify the 3 keys

What is the scientific question?

* How to replay field bugs in the lab

What's the key new idea that allows answering it?
* Recoding all nondeterminism

How do you measure the success of the answer?

Let’s identify the 3 keys

What is the scientific question?

* How to replay field bugs in the lab

What's the key new idea that allows answering it?
* Recoding all nondeterminism

How do you measure the success of the answer?

* Measure overhead

* Use it to find real bugs

