
2/1/17	

1	

Dynamic	
 Analysis	

Homework	
 1	

•  Due	
 Thursday	
 Feb	
 16,	
 9	
 AM	
 on	
 moodle	

•  On	
 dynamic	
 analysis	
 (today’s	
 topic)	

•  Install	
 and	
 use	
 an	
 open-­‐source	
 tool:	
 Daikon	

•  Add	
 a	
 very	
 useful	
 tool	
 to	
 your	
 toolbox	

•  Understand	
 how	
 dynamic	
 analysis	
 works	

Any	
 quesNons?	

Today’s	
 plan	

•  RunNme	
 monitoring	

– RaNonal	
 Purify	

•  Dynamic	
 invariant	
 detecNon	

– Daikon	

RaNonal	
 Purify	

•  UNICOM	

–  first	
 RaNonal,	
 then	
 bought	
 by	
 IBM,	
 then	
 sold	
 to	
 UNICOM	

•  Memory	
 debugging	

–  uniniNalized	
 memory	
 access	

–  buffer	
 overflow	

–  improper	
 freeing	
 of	
 memory	

•  Memory	
 leak	
 detecNon	

– memory	
 blocks	
 that	
 no	
 longer	
 have	
 a	
 valid	
 pointer	

hZps://teamblue.unicomsi.com/products/purifyplus	
 	

The	
 Problem	
 (for	
 Purify	
 to	
 solve)	

•  C/C++	
 are	
 not	
 type	
 safe	
 	

•  The	
 compiler	
 does	
 not	
 enforce	
 type	

abstracNons	
 	

•  Does	
 the	
 runNme	
 system?	

– no	

2/1/17	

2	

Memory	

•  What	
 happens	
 if	
 we	
 write	
 here?	

Object	
 Object	
 int[]	

Memory	

The	
 Problem	
 (for	
 Purify	
 to	
 solve)	

•  C/C++	
 are	
 not	
 type	
 safe	
 	

•  The	
 compiler	
 does	
 not	
 enforce	
 type	

abstracNons	
 	

•  Does	
 the	
 runNme	
 system?	

– no	

•  Possible	
 to	
 read	
 or	
 write	
 outside	
 of	
 your	

intended	
 data	
 structure	
 	

•  …	
 and	
 many	
 undesirable	
 behaviors	

What	
 can	
 we	
 do?	

•  Track	
 each	
 memory	
 locaNon	

One	
 of	
 three	
 states:	

•  Unallocated:	
 cannot	
 be	
 read	
 or	
 wriZen	

•  Allocated	
 but	
 uniniNalized:	
 cannot	
 be	
 read	
 	

•  Allocated	
 and	
 iniNalized:	
 can	
 be	
 read	
 or	
 wriZen	

Memory	

•  What	
 happens	
 if	
 we	
 write	
 here?	

Object	
 Object	
 int[]	

Memory	

Represent	
 each	
 byte’s	
 state	
 	

with	
 a	
 machine	

Anything	
 missing?	

Unallocated	

UniniNalized	

IniNalized	

malloc	
 wr
ite
	

free	

How	
 do	
 we	
 implement	
 this?	

•  Keep	
 a	
 machine	
 for	
 each	
 byte	

•  On	
 each	
 access	

–  check	
 the	
 state	
 of	
 each	
 byte	

–  update	
 the	
 machine	
 state	

•  Can	
 instrument	
 the	
 binary	
 (no	
 need	
 for	
 source	
 code)	

–  Add	
 code	
 before	
 each	
 load	
 and	
 store	

–  Represent	
 the	
 machines	
 as	
 a	
 giant	
 array	

•  How	
 many	
 bits	
 needed	
 per	
 byte	
 of	
 system	
 memory?	

•  What’s	
 the	
 overhead?	

•  Catches	
 byte-­‐level,	
 but	
 not	
 bit-­‐level	
 errors	

•  RunNme	
 CPU	
 efficiency?	

•  very	
 slow,	
 but	
 worth	
 it	

2/1/17	

3	

Memory	

•  We	
 can	
 detect	
 errors	
 in	
 the	
 blue	
 areas.	

•  We	
 can	
 detect	
 some	
 errors	
 in	
 the	
 green	
 areas.	

•  But	
 there	
 are	
 many	
 others	
 we	
 cannot.	

Object	
 Object	
 int[]	

Memory	

Can	
 we	
 do	
 beZer?	

•  We	
 can	
 detect	
 unallocated	
 or	
 uniniNalized	

accesses.	
 	
 	

•  Can	
 we	
 force	
 all	
 accesses	
 to	
 be	
 that	
 way?	

Padding	
 between	
 objects	

If	
 we	
 disallow	
 adjacent	
 objects	
 in	
 memory	
 (pad	

them),	
 then	
 all	
 accesses	
 past	
 the	
 end	
 of	
 an	
 array	

access	
 a	
 blue	
 zone	
 	

Object	
 Object	
 int[]	

Memory	

Let	
 memory	
 age	

•  Do	
 not	
 allow	
 reallocaNon	
 of	
 freed	
 memory	
 for	

some	
 Nme	

•  Prevents	
 errors	
 caused	
 by	
 dangling	
 pointers	

•  Both	
 this	
 and	
 padding	
 can	
 be	
 easily	

implemented	
 in	
 the	
 malloc	
 library	

Garbage	
 collecNon	

•  Instead	
 of	
 bits,	
 keep	
 track	
 of	
 pointers	
 to	

memory	

•  When	
 no	
 pointers	
 are	
 leg,	
 free	
 the	
 memory	

•  Where	
 have	
 we	
 seen	
 this	
 before?	

In	
 PracNce	

•  These	
 ideas	
 work	
 preZy	
 well	
 and	
 are	
 widely	

used.	

•  Ogen,	
 it	
 is	
 OK	
 to	
 pay	
 very	
 high	
 performance	

price	
 to	
 get	
 system	
 correctness.	

•  Dynamic	
 analysis	
 instruments	
 the	
 program,	

can	
 maintain	
 properNes	
 at	
 runNme.	

2/1/17	

4	

Today’s	
 plan	

•  RunNme	
 monitoring	

– RaNonal	
 Purify	

à	
 Dynamic	
 invariant	
 detecNon	

– Daikon	

What	
 is	
 a	
 program	
 supposed	
 to	
 do?	

•  How	
 do	
 we	
 know	
 the	
 program’s	
 specificaNon?	

•  Maybe	
 the	
 developers	
 wrote	
 it	
 down.	

– but	
 ogen,	
 that	
 has	
 errors	

•  Without	
 a	
 specificaNon	
 or	
 some	
 way	
 to	
 tell	
 if	

behavior	
 is	
 correct,	
 we	
 cannot	
 test!	

What	
 is	
 a	
 specificaNon?	

•  The	
 documentaNon	
 can	
 be	
 the	
 specificaNon	

–  Informal	

– May	
 contain	
 mistakes	

–  Can	
 be	
 hard	
 to	
 parse	

•  The	
 program	
 itself	
 is	
 a	
 specificaNon	

–  TesNng	
 becomes	
 a	
 tautology	

–  But	
 is	
 there	
 some	
 kind	
 of	
 tesNng	
 this	
 can	
 facilitate?	

•  Regression	
 tesNng	

– Also	
 great	
 for	
 program	
 understanding,	
 reasoning,	
 etc.	

Use	
 the	
 program	
 to	
 find	
 likely	
 invariants	

•  Hypothesize	
 an	
 invariant	

–  for	
 example,	
 square(x) > 0

•  Run	
 the	
 program	
 on	
 many	
 test	
 inputs	
 	

	
 (without	
 needing	
 to	
 know	
 the	
 outputs)	

•  If	
 square(x) > 0 in	
 all	
 the	
 execuNons,	
 	

it’s	
 a	
 likely	
 invariant.	
 	

Example:	

funny_sqrt(int x)

 bool positive = (x>0);

 if (positive)

 j = sqrt(x);

 else

 j = sqrt(-x);
 return j;

Test	
 for	
 -­‐100	
 <	
 x	
 <	
 100	
 j	
 ≥	
 0	

What	
 is	
 an	
 invariant?	
 (j	
 ≥	
 0	
 is)	

•  Invariants	
 hold	
 at	
 a	
 program	
 point	

– before	
 a	
 statement	
 executes	

– ager	
 a	
 statement	
 executes	

– or	
 maybe	
 at	
 all	
 program	
 points	

•  Invariants	
 cannot	
 reference	
 variables	
 out	
 of	

scope	

–  Is	
 j < abs(y)?	

2/1/17	

5	

Can	
 execuNons	
 ever	
 prove	
 a	
 property?	

•  Can	
 show	
 that	
 a	
 property	
 holds	
 in	
 many	

execuNons.	

•  But	
 can	
 this	
 method	
 show	
 that	
 a	
 property	

always	
 holds?	

•  What	
 can	
 execuNons	
 prove?	

– They	
 can	
 disprove	
 invariants	
 by	
 finding	
 an	

execuNon	
 in	
 which	
 an	
 invariant	
 holds.	

Example:	
 Is	
 j	
 always	
 0?	

funny_sqrt(int x)

 bool positive = (x>0);

 if (positive)

 j = sqrt(x);

 else

 j = sqrt(-x);
 return j;

Test	
 for	
 -­‐100	
 <	
 x	
 <	
 100	

No,	
 when	
 x	
 is	
 -­‐100,	
 j	
 is	
 10.	

	

j	
 can	
 be	
 between	
 0	
 and	
 10	

How	
 do	
 we	
 know	
 if	
 an	
 invariant	
 is	
 likely?	

Thesis:	
 	

Hypothesize	
 i	
 is	
 an	
 invariant	
 at	
 a	
 program	
 point.	

If	
 many	
 test	
 cases	
 do	
 not	
 disprove	
 the	

hypothesis,	
 conclude	
 that	
 i	
 likely	
 is	
 an	
 invariant.	
 	

This	
 doesn’t	
 quite	
 work…	

Example:	

funny_sqrt(int x)

 bool positive = (x>0);

 if (positive)

 j = sqrt(x);

 else

 j = sqrt(-x);
 return j;

Test	
 for	
 0	
 <	
 x	
 <	
 100	

x	
 ≥	
 j	

posiNve	
 =	
 true	

What	
 went	
 wrong?	

•  We	
 had	
 many	
 test	
 cases	

none	
 disproved	
 the	
 invariant	
 	

•  But	
 the	
 hypothesis	
 is	
 not	
 disproved	
 because	

we	
 didn’t	
 even	
 execute	
 the	
 relevant	
 line	
 of	

code.	
 	

	

Example:	

funny_sqrt(int x)

 bool positive = (x>0);

 if (positive)

 j = sqrt(x);

 else

 j = sqrt(-x);
 return j;

Test	
 for	
 0	
 <	
 x	
 <	
 100	

x	
 ≥	
 j	

posiNve	
 =	
 true	

2/1/17	

6	

SoluNon:	
 Use	
 staNsNcs!	

•  An	
 invariant	
 is	
 only	
 likely	
 if	
 	

–  the	
 observaNons	
 do	
 not	
 disprove	
 it	

AND	

–  the	
 relevant	
 observaNons	
 are	
 staNsNcally	

significant	

How	
 to	
 compute	
 staNsNcal	
 significance?	

•  For	
 a	
 hypothesized	
 invariant	
 P(x,y)	

What	
 are	
 the	
 chances	
 P(x,y)	
 is	
 saNsfied	
 under	

a	
 random	
 choice	
 of	
 x	
 and	
 y?	
 	

•  Assume	
 0	
 ≤	
 x,	
 y	
 <	
 1000	
 	

P(x	
 ==	
 y)	
 ≈	

P(x	
 <	
 y)	
 	
 	
 ≈	

P(x	
 !=	
 y)	
 	
 ≈	

	

.001	

.5	
 	

.999	
 	

What	
 to	
 compute	

•  We	
 want	
 a	
 high	
 confidence	
 that	
 invariants	
 are	

not	
 observed	
 by	
 chance	
 	

•  The	
 number	
 of	
 samples	
 we	
 need	
 varies	
 with	

the	
 invariant	

– predicates	
 have	
 widely	
 varying	
 chances	
 of	
 being	

accidentally	
 saNsfied	

What	
 can	
 we	
 do	
 with	
 unlikely	
 invariants?	

•  If	
 it	
 is	
 likely	
 that	
 a	
 [non]invariant	
 is	
 an	

accident,	
 don’t	
 report	
 it.	

•  Give	
 the	
 user	
 control	
 of	
 the	
 confidence	

threshold.	

An	
 invariant	
 may	
 be	
 true,	
 but	
 not	
 be	

staNsNcally	
 significant	
 when	
 examined	

under	
 some	
 (all?)	
 test	
 suites.	
 	
 	

Which	
 invariants	
 do	
 we	
 check?	

•  Given	
 a	
 possible	
 invariant,	
 we	
 can	
 check	
 if	
 it	
 is	

likely.	

•  But	
 which	
 possible	
 invariants	
 do	
 we	
 check?	
 	

How	
 many	
 are	
 there?	

How	
 many	
 are	
 there?	

•  Ordering	
 relaNonships	
 over	
 two	
 variables:	
 	

x	
 <	
 y,	
 x	
 ==	
 y,	
 x	
 >	
 y,	
 x	
 ≤	
 y,	
 x	
 ≥	
 y,	
 x	
 ≠	
 y	

•  No	
 problem.	
 	
 Just	
 a	
 finite	
 number	

–  If	
 a	
 program	
 has	
 n	
 variables,	
 how	
 many	
 possible	

such	
 relaNonships	
 are	
 there?	

Θ(n2)	

2/1/17	

7	

What	
 about	
 other	
 types?	

•  x	
 =	
 c,	
 for	
 some	
 constant	
 c	

many:	
 264	
 for	
 ints	
 on	
 a	
 64-­‐bit	
 machine	
 =	

18,446,744,073,709,551,616	
 	

Use	
 the	
 computer	
 for	
 what	
 it’s	
 good	
 at	

•  Guess	
 a	
 HUGE	
 number	
 of	
 possible	
 invariants	

•  Check	
 them	
 all	

•  Only	
 those	
 that	
 are	
 likely	
 true	
 will	
 survive	

•  Computers	
 are	
 great	
 at	
 this!	

So	
 what	
 do	
 we	
 do	
 about	
 the	

18,446,744,073,709,551,616	
 ints?	

Possible	
 invariant:	
 x=c	

•  Don’t	
 store	
 any	
 at	
 first.	

•  First	
 Nme	
 you	
 see	
 x	
 assigned	
 to	
 some	
 c,	

remember	
 that	
 c.	

•  Then	
 check	
 if	
 x=c	
 in	
 all	
 later	
 execuNons.	

For	
 others	
 too	

•  Same	
 idea	
 for	
 more-­‐complex	
 invariant	
 types:	

•  For	
 example:	

ax	
 +	
 b	
 =	
 y	

•  	
 Two	
 observaNons	
 of	
 (x,y)	
 is	
 sufficient	
 to	
 solve	

for	
 the	
 only	
 possible	
 (a,b).	

And	
 others	
 sNll	

•  We	
 can	
 do:	

min(array)	

max(array)	

sum(array)	

etc.	

•  These	
 expressions	
 can	
 be	
 like	
 variables:	

x	
 =	
 min(array	
 z)	

Review	

•  Guess	
 lots	
 of	
 invariants	

•  Check	
 which	
 ones	
 hold	

•  Keep	
 staNsNcs	
 to	
 check	
 for	
 staNsNcal	

significance	

Those	
 guesses	
 that	
 survived	
 all	
 the	
 execuNons	

and	
 are	
 staNsNcally	
 significant	
 are	
 likely	
 true.	

Does	
 not	
 need	
 expected	
 execuNon	
 outputs	

2/1/17	

8	

In	
 pracNce	

•  This	
 works!	

•  Finds	
 interesNng	
 invariants	
 for	
 complex	

programs.	

•  Gives	
 concise	
 specificaNons	

•  Needs	
 fewer	
 execuNons	
 than	
 you’d	
 think.	

False	
 invariants	
 die	
 quickly	

number	
 of	
 execuNons	

surviving	
 potenNal	
 invariants	

Daikon	

•  Implements	
 dynamic	
 invariant	
 detecNon	

•  Open	
 source,	
 free	
 to	
 use,	
 	

•  Highly	
 robust	
 and	
 customizable	

•  Takes	
 some	
 Nme	
 to	
 master	
 but	
 very	
 powerful	

•  You’ll	
 see	
 it	
 on	
 homework	
 1	

hZp://groups.csail.mit.edu/pag/daikon	
 	

