Are Mutants a Valid Substitute for Real
Faults in Software Testing

Just, R., Jalali, D., Inozemtseva, L., Ernst, M. D., Holmes, R., Fraser, G.

slide author names omitted for FERPA compliance

Mutation Analysis

[Program] [Test suite]
Generate
mutants
I
[Mutant detection rate = Real fault detection rate? }
\ 4
) U Execute Mutation

[Mutants P! Test suite detection rate

|

Research Questions

-> Are real faults coupled to mutants generated by commonly used mutation
operators?

- What types of real faults are not coupled to mutants?

-> |s mutant detection correlated with real fault detection?

What are Mutants?

- Created by systematically injecting small artificial faults into the program
being tested.

- Using mutation operators - syntactic variations are made(one per mutant).

-> Proxy measurement for test suite effectiveness- Mutation score

Mutation Operators

1. Replace constants
2. Replace operators.
3. Modify branch conditions.

4. Delete statements.

Replace Constants

[Program } ------------

Generate
mutants

4 f
(o
[Mutants]J}

*René Just, UW CSE (mutants_real_faults_fse_slides)

public float avg(float[] data) {9

float[sum = @;]

for (float num : data) {
sum += num;

}

return sum / data.length;

}

public float avg(float[] data) {®
float [sum = 1;)|
for (float num : data) {
sum += num;
}

return sum / data.length;

}

Replace Operators

[Program } ------------

Generate
mutants

p
(o
[Mutants]J}

*René Just, UW CSE (mutants_real_faults_fse_slides)

public float avg(float[] data) {B
float sum = 0;
for (float num : data) {
sum += num;

}

return (sum / data.length;|

}

public float avg(float[] data) {B
float sum = 0;
for (float num : data) {
sum += num;

}

return (sum * data.length;]

}

Delete Statements

[Program } -------------

Generate
mutants

p
(o
[Mutants]J}

*René Just, UW CSE (mutants_real_faults_fse_slides)

public float avg(float[] data) {B
float sum = 0;
for (float num : data) {
[sum += num;]
}

return sum / data.length;

}

public float avg(float[] data) {B
float sum = 0;
for (float num : data) {

[]
}

return sum / data.length;

}

Related Work-Summary

Real LOC Tests Mutation Mutants Coverage
faults suites operators evaluated controlled
[8] 12 1,000 gen Rc,Ri,Ro 1% no
[1] 38 5905 gen Rc,Ro,Nbc,Ds 10% no
[27] 38 5,905 gen Rc,Ri,Ro,Nbc,Ds 10% no
Our gen

Rc,Ro,Mbc,Ds 100% yes
dev

Rc - Replace constants, Ri - Replace Identifiers, Ro - Replace operators, Nbc - Negate branch conditions,
Ds - Delete statements, Mbc - Modify branch conditions.

[8] : M. Daran and P. Thévenod-Fosse. Software error analysis: A real case study involving real faults and mutations.
[1]:J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing experiments?

[27] : A. S. Namin and S. Kakarla. The use of mutation in testing experiments and its sensitivity to external threats.

Key |Idea - Methodology

Developer
written [Real fault]
Real fault

4
(detection rate Combare
[Test suite resulft)s
Mutant

detection rate

[Automated] [Mutants]

Key |Idea - Methodology

Developer
written [Real fault]
Real fault

4
(detection rate Compare
[Test suite results
Mutant

detection rate

[Automated] [Mutants]

Methodology - Reproducible and isolated real faults

Candidate = Compilable Reproducible Isolated

revisions revisions faults faults
Chart 80 62 28 26
Closure 316 227 179 133
Math 435 304 132 106
Time 75 57 20 27
Lang 273 186 69 65
Total 1179 836 437 357

source code diff

T

g features & \\]/ bug fix B = ki

refactorings

Key lIdea - Methodology

Developer
written [Real fault]
Real fault

p
(detection rate Combare
[Test suite resulfs
Mutant

detection rate

[Automated]

Methodology- Mutant Generation

- 230,000 mutants generated using Major mutation framework.

-> Mutation operators as discussed before.

14

Key |Idea - Methodology

Developer
written [Real fault]
Real fault

p
£ detection rate Combare
[Test suite resulrt)s
Mutant

detection rate

[Automated] [Mutants]

Methodology- Test suite

Developer written test suite
-> Test pair < T,,,and Tg, >

-> Average statement coverage of Ty, : 90%

Automatically generated test suite

- Generated using EvoSuite, Randoop and JCrasher.

-=> Around 35000 test suites.

- Average statement coverage : 55%

16

Developer written test suites:

1 i
Tbug T;ass T}ail]}ix
1 | T a] TN
Tpu g tﬁ.\' tﬁ.\' t fix
ass : 1 1y 1y
0% R Ll I . I | pass
: W " g+ [|(on V2
. / Tou g fix fix
—T1 : | fail
tk ' i . . R on V,
bug | Thug is previous version |, pnm
fail of i, — empty if 75 fix)
on V) was introduced in 7, } fail
on V»

Figure 2: Relationship between the i-th obtained test suite pair
<];ass ’Tflai1> and the developer-written test suites 7, , and T, .

Evaluation

RQ1: Are real faults coupled to mutants generated by using mutation operators?

> Test pair < T, ,and Tg, > : Tg, (mutant detection rate) > T

bug bug

-> Results: Mutant detection rate increased for 73% of faults.

-> Conditional operator replacement, Relational operator replacement, and
statement deletion mutants.

Mutant detection rate
increased

Mutant detection rate
unchanged

Evaluation

RQ2: Type of faults not represented by mutants?

-> Qualitative study of 27% of the faults.

Mutant detection rate

increased 3%

- Weakness or general limitation.

Mutant detection rate
unchanged

19

Evaluation

RQ2: Type of faults not represented by mutants?

- Qualitative study of 27% of the faults.

-> Weakness or general limitation.

Mutant detection rate

increased 10%
Weak or missing 17%
mutation operator

73%
No mutation

operator

20

Weak or missing mutation operator

Examples

- Argument Omission

- return solve(min, max);
+ return solve(f, min, max);

-> Statement Deletion

}

+ return false;

}
ca

)]

Q
= (@
L S =

{
ar ch = str.charAt (0);

21

Real faults not coupled to Mutants

Examples

-> Code Deletion
if (childType.isDict ()) {

- } else if (n.getJSType != null &é&
- parent.isAssign()) {
- return;

}

=> Similar method calls

- return getPct ((Comparable<?>) v);
+ return getCumPct ((Comparable<?>) v);

22

Evaluation

RQ3: Is mutant detection correlated with fault detection?

I Coverage unchanged [Coverage increased

Z&; 40%
o
S 20%
5
§ 0% || II I. | [[E3 Mutation score vs. real fault detection rate
0 1 2 3 4 5 6 17 8 9>10 E3 Statement coverage vs. real fault detection rate
Number of additionally detected mutants
10 =T —|— — — —
0.5- —
0.0- — — i -
—0.5‘ H . I T . —
-1.0- -

Chart Closure Lang Math Time 23

Contributions

1. 357 new developer fixed and manually-verified real faults with test suites.

2. Most comprehensive study to date on mutation testing.
3. Investigation confirmed 73% real faults coupled with mutants.

4. Concrete suggestions for improving mutation analysis and identifying its
inherent limitations.

5. Significant correlation between mutant detection and fault detection.

24

Discussion

-> Are the results representative of the software projects since only 5 projects are
under consideration?

= Do the results apply to other programming languages as well?

-=> Does the removal of faults introduce a fault bias?

=> Can we minimize the test suite based on the mutation scores?

-> Can we generate a test suite based on mutants?

25

Thank you ©

26

