
Robert A. Cochran, Loris D. Antoni, Benjamin Livshits,
David Molnar, and Margus Veanes

Program Boosting:
Program Synthesis
via Crowd-Sourcing

slide author names omitted for FERPA compliance

How can we use crowd-sourcing to boost
program accuracy where the program’s initial
specification may be open to interpretation?

Problem

Key Insight
Regular Expressions

➔ Lack an easy-to-formalize specification
➔ Different regexes cover different cases
➔ Surprisingly difficult to implement addressing

all the tricky corner cases
➔ Plenty of room for ambiguity

CrowdBoost

➔ Pose a tricky programming task as a crowd-
sourcing challenge

➔ Describe the task in question in a very loose
form of specification

➔ Provide positive and negative examples (“the
golden set”), giving a partial specification

➔ Blend imperfect solutions together to yield a
solution of higher quality using a genetic
programming approach

➔ Refine the result using a two-crowd approach

Task Candidate
Programs

Blend
Programs

Training Set

More
Accurate
Program

Approach

Skilled Crowd
(developers)

Untrained Crowd
(regular computer
users)

Example

➔ Post a programming task to Bountify:
“Generate a regular expression to validate
phone numbers”

➔ Take the first 3 submissions

Example

A regular expression for a phone number

Example

Genetic Programming Algorithm

Example

➔ Represent each regular expression as a
Symbolic Finite Automaton

➔ Manipulate each SFA within a genetic
programming algorithm

Example

➔ Perform crossover operations on the candidates

➔ Perform mutation operations on the candidates

Example

Example

➔ Filter the new examples by human evaluation via
Mechanical Turk, and update our candidates.

➔ Run fitness tests on the candidates and select the
best.

➔ Submit our resulting population back to the head of
the main algorithm.

➔ Repeat the process until we find a perfect solution, or
we run out of money .

Example

Task: Phone numbers Fitness: 0.897959183673469

^((((((([02-9]|+1([0-9]|[\x20-.][0-9]))|((|+1((|[\x20-.]())[0-9])([0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])|(([02-9]|+1([0-
9]|[\x20-.][0-9]))|((|+1((|[\x20-.]())[0-9])[0-9][0-9][\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))|(([02-9]|+1([0-9]|[\x20-.][0-9]))|((|+1
((|[\x20-.]())[0-9])[0-9][0-9])(([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])|[\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9]
[\x20-.][0-9][0-9][0-9][0-9])))|1(_)*((([0-9][0-9][0-9]([0-9][0-9][0-9][0-9][0-9][0-9]([0-9])?|([0-9][0-9][\x20-.]|[0-9][0-9][0-9][\x20-.])[0-9][0-9][0-9][0-9])|([0-9]([0-9][0-9]
[0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))|(([0-9][0-9][\x20-.]|[0-9][0-9][0-9][\x20-.])|([0-9][0-9][0-9][\x20-.])([0-9][0-9][0-9]
[0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))|(([0-9][0-9])|[0-9][0-9][0-9]))|([0-9][0-9][0-9]))(([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.]
[0-9][0-9][0-9][0-9])|[\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))))|1(_)*[\x20-.](1_)*(((((((([0-9][0-9]([0-9][0-9][0-9][0-9][0-9]
[0-9]([0-9])?|([0-9][0-9][\x20-.]|[0-9][0-9][0-9][\x20-.])[0-9][0-9][0-9][0-9])|(([0-9][\x20-.]|([0-9][0-9][\x20-.])([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-
9][0-9][0-9][0-9]))|1[0-9][0-9][0-9]([0-9][0-9][0-9][0-9][0-9][0-9]([0-9])?|([0-9][0-9][\x20-.]|[0-9][0-9][0-9][\x20-.])[0-9][0-9][0-9][0-9]))|(([02-9]|+1([0-9]|([0-9]))|1([0-9])
([0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))|(1([0-9][0-9][\x20-.]|[0-9][0-9][0-9][\x20-.])|(([02-9]|+1([0-9]|([0-9]))|1
([0-9])[0-9][0-9][\x20-.])([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))|(+1[\x20-.]|1[\x20-.])(([0-9]|([0-9])([0-9][0-9][0-9][0-9][0-9][0-9][0-
9][0-9][0-9]|[0-9][0-9][0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])|([0-9]|([0-9])[0-9][0-9][\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-
9])))|(([0-9])|([0-9][0-9]))(([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])|[\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.]
[0-9][0-9][0-9][0-9])))|((1([0-9][0-9])|[0-9][0-9][0-9]))|(([02-9]|+1([0-9]|([0-9]))|1([0-9])[0-9][0-9]))|(+1[\x20-.]|1[\x20-.])([0-9]|([0-9])[0-9][0-9]))(([0-9][0-9][0-9][0-9][0-9]
[0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])|[\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])))))$

Evaluation: Experimental Analysis

Golden Set
Initial Examples

94 + & 111 -

Specification:
Phone, Email,
Date, or URL

Candidate regexes obtained
from developers from Bountify
(14), Regexlib (4), and other

sources (15)

Select Successful
Candidate
Programs

465
Experimental

Pairs

Blend Candidate
Programs:

Crossover &
Mutation

Updated set of
considered

programs and
examples

Classify new examples
using MechanicalTurk as

Valid or Invalid and add to
evolving training set

Measure fitness
using golden
and refined

example sets

Output Program
with best fitness

Evaluation: Initial Data

Specifications provided to Bountify developers. The last two columns
capture the number of positive and negative examples (a subset of the
golden set) given to workers in the task specifications.

The number of examples in the golden set and the number of candidate
regexes in each case study.

Summarized size and complexity of the candidate regexes by length and by
number of states in each resulting SFA.

Distribution of initial accuracy (fitness)
of candidate regular expressions by
source. Overall, initial fitness values
hover between .5 and .75, with none of
the regexes being either “too good” or
“too bad”.

Evaluation: Findings

The regular expressions for each of the tasks were
tested for accuracy on positive and negative examples
in two sets, the golden set and the evolved set.

Golden set can be manipulated by adding and removing
examples to influence accuracy measurements.

Evolved set is more representative since it evolves
naturally through refinement and crowd consensus.

High-level results obtained from the boosting process
are consistent across all tasks showing an average
boost of 16.25%.

Evaluation: Findings

Statistics for the crossover and mutation process across the tasks. The number of crossovers produced during boosting is in ten of thousands, but only a small
percentage of them survive to the next generation. The number of mutations is smaller (single thousands), and their survival rate is somewhat higher. This can be
explained by the fact that mutations are relatively local transformations and are not nearly as drastic as crossovers.

In each task category, boosting results (mean) are shown via fitness values
measured on either the golden set or the evolved set for three separate
regexes; initial, “no crowd” and “crowd”.

Characterizing the boosting process in three dimensions: the number of
generations, the number of generated strings, and the measured consensus for
classification tasks.

Evaluation: Findings

Running times:
Pair-wise boosting for each task averaged from about
4 minutes and 37 minutes per pair.

Overall cost:
Performing program boosting across all four tasks
ranged between 41 cents and 3 dollars per pair.

Left: Running times for each task
Right: Costs for Mechanical Turk

➔ A semi-automatic program synthesis technique using a set of initial crowd-sourced programs that finds the
best result by crowd-sourcing a training set for a measure of fitness

➔ An implementation for program boosting algorithm involving a genetic programming technique with crossover
and mutation algorithms

➔ CrowdBoost represents regular expressions using Symbolic Finite Automata (SFAs). This is most likely the first
work to use genetic programming on automata over a complex alphabet, UTF-16 in this case

➔ An evaluation of this program boosting technique over four case studies, which yielded an average program
boost of 16.25% over 465 pairs of regular expressions. The results also showed consistency across the tasks
and sources of regular expressions, giving support to the generality of their approach

In Summary

How can crowd-sourcing programs and examples
go wrong and affect program boosting?

Discussion

How will this technique scale on pieces of code?

Discussion

How do you know when to stop crowd-sourcing?

Discussion

Is this approach worth the amount of time it takes
to get the results?

Discussion

Do we know that the final program is the most fit?

Discussion

Program Boosting Powerpoint Presentation -> google.com
Symbolic Automata -> cs.wisc.edu
Regular Expressions -> code.tutsplus.com
Genetic Programming -> geneticprogramming.com, wikipedia.org
Pairwise Testing -> tutorialspoint.com
Genetic Algorithms vs Genetic Programming -> stackoverflow.com

References

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CD8QFjADahUKEwiQxdCG2NbIAhWEGB4KHSJ-BC0&url=http%3A%2F%2Fpages.cs.wisc.edu%2F~loris%2Fpapers%2Fpopl15crowdboost.pptx&usg=AFQjCNFA547ugbQ1jhH2h8JY37-Y58HXCw&bvm=bv.105814755,d.dmo&cad=rja
http://pages.cs.wisc.edu/~loris/symbolicautomata.html
http://code.tutsplus.com/tutorials/8-regular-expressions-you-should-know--net-6149
http://www.geneticprogramming.com/Tutorial/
https://en.wikipedia.org/wiki/Genetic_programming
http://www.tutorialspoint.com/software_testing_dictionary/pairwise_testing.htm
http://stackoverflow.com/questions/3819977/what-are-the-differences-between-genetic-algorithms-and-genetic-programming

