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How can we use crowd-sourcing to boost 
program accuracy where the program’s initial 
specification may be open to interpretation?

Problem



Key Insight
Regular Expressions

➔ Lack an easy-to-formalize specification
➔ Different regexes cover different cases
➔ Surprisingly difficult to implement addressing 

all the tricky corner cases
➔ Plenty of room for ambiguity

CrowdBoost

➔ Pose a tricky programming task as a  crowd-
sourcing challenge

➔ Describe the task in question in a very loose 
form of  specification

➔ Provide positive and negative examples (“the 
golden set”), giving a  partial specification

➔ Blend imperfect solutions together to yield a  
solution of higher quality using a genetic 
programming  approach

➔ Refine the result using a two-crowd approach



Task Candidate 
Programs

Blend 
Programs

Training Set

More 
Accurate 
Program

Approach

Skilled Crowd
(developers)

Untrained Crowd
(regular computer 
users)



Example

➔ Post a programming task to Bountify: 
“Generate a regular expression to validate 
phone numbers”

➔ Take the first 3 submissions



Example

A regular expression for a phone number



Example

Genetic Programming Algorithm



Example

➔ Represent each regular expression as a 
Symbolic Finite Automaton

➔ Manipulate each SFA within a genetic 
programming algorithm



Example

➔ Perform crossover operations on the candidates



➔ Perform mutation operations on the candidates

Example



Example

➔ Filter the new examples by human evaluation via 
Mechanical Turk, and update our candidates. 

➔ Run fitness tests on the candidates and select the 
best.
 

➔ Submit our resulting population back to the head of 
the main algorithm.

➔ Repeat the process until we find a perfect solution, or 
we run out of money .



Example

Task: Phone numbers       Fitness: 0.897959183673469

^((((((([02-9]|+1([0-9]|[\x20-.][0-9]))|((|+1((|[\x20-.]())[0-9])([0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])|(([02-9]|+1([0-
9]|[\x20-.][0-9]))|((|+1((|[\x20-.]())[0-9])[0-9][0-9][\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))|(([02-9]|+1([0-9]|[\x20-.][0-9]))|((|+1
((|[\x20-.]())[0-9])[0-9][0-9])(([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])|[\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9]
[\x20-.][0-9][0-9][0-9][0-9])))|1(_)*((([0-9][0-9][0-9]([0-9][0-9][0-9][0-9][0-9][0-9]([0-9])?|([0-9][0-9][\x20-.]|[0-9][0-9][0-9][\x20-.])[0-9][0-9][0-9][0-9])|([0-9]([0-9][0-9]
[0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))|(([0-9][0-9][\x20-.]|[0-9][0-9][0-9][\x20-.])|([0-9][0-9][0-9][\x20-.])([0-9][0-9][0-9]
[0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))|(([0-9][0-9])|[0-9][0-9][0-9]))|([0-9][0-9][0-9]))(([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.]
[0-9][0-9][0-9][0-9])|[\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))))|1(_)*[\x20-.](1_)*(((((((([0-9][0-9]([0-9][0-9][0-9][0-9][0-9]
[0-9]([0-9])?|([0-9][0-9][\x20-.]|[0-9][0-9][0-9][\x20-.])[0-9][0-9][0-9][0-9])|(([0-9][\x20-.]|([0-9][0-9][\x20-.])([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-
9][0-9][0-9][0-9]))|1[0-9][0-9][0-9]([0-9][0-9][0-9][0-9][0-9][0-9]([0-9])?|([0-9][0-9][\x20-.]|[0-9][0-9][0-9][\x20-.])[0-9][0-9][0-9][0-9]))|(([02-9]|+1([0-9]|([0-9]))|1([0-9])
([0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))|(1([0-9][0-9][\x20-.]|[0-9][0-9][0-9][\x20-.])|(([02-9]|+1([0-9]|([0-9]))|1
([0-9])[0-9][0-9][\x20-.])([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))|(+1[\x20-.]|1[\x20-.])(([0-9]|([0-9])([0-9][0-9][0-9][0-9][0-9][0-9][0-
9][0-9][0-9]|[0-9][0-9][0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])|([0-9]|([0-9])[0-9][0-9][\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-
9])))|(([0-9])|([0-9][0-9]))(([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])|[\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.]
[0-9][0-9][0-9][0-9])))|((1([0-9][0-9])|[0-9][0-9][0-9]))|(([02-9]|+1([0-9]|([0-9]))|1([0-9])[0-9][0-9]))|(+1[\x20-.]|1[\x20-.])([0-9]|([0-9])[0-9][0-9]))(([0-9][0-9][0-9][0-9][0-9]
[0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])|[\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])))))$



Evaluation: Experimental Analysis

Golden Set
Initial Examples

94 + & 111 -

Specification: 
Phone, Email, 
Date, or URL

Candidate regexes obtained 
from developers from Bountify 
(14), Regexlib (4), and other 

sources (15)

Select Successful 
Candidate 
Programs

465
Experimental 

Pairs

Blend Candidate 
Programs:

Crossover & 
Mutation

Updated set of 
considered 

programs and 
examples

Classify new examples 
using MechanicalTurk as 

Valid or Invalid and add to 
evolving training set

Measure fitness 
using golden 
and refined 

example sets 

Output Program 
with best fitness



Evaluation: Initial Data

Specifications provided to Bountify developers. The last two columns 
capture the number of positive and negative examples (a subset of the 
golden set) given to workers in the task specifications.

The number of examples in the golden set and the number of candidate 
regexes in each case study.

Summarized size and complexity of the candidate regexes by length and by 
number of states in each resulting SFA.

Distribution of initial accuracy (fitness) 
of candidate regular expressions by 
source. Overall, initial fitness values 
hover between .5 and .75, with none of 
the regexes being either “too good” or 
“too bad”.



Evaluation: Findings

The regular expressions for each of the tasks were 
tested for accuracy on positive and negative examples 
in two sets, the golden set and the evolved set. 

Golden set can be manipulated by adding and removing 
examples to influence accuracy measurements.

Evolved set is more representative since it evolves 
naturally through refinement and crowd consensus.

High-level results obtained from the boosting process 
are consistent across all tasks showing an average 
boost of 16.25%. 



Evaluation: Findings

Statistics for the crossover and mutation process across the tasks. The number of crossovers produced during boosting is in ten of thousands, but only a small 
percentage of them survive to the next generation. The number of mutations is smaller (single thousands), and their survival rate is somewhat higher. This can be 
explained by the fact that mutations are relatively local transformations and are not nearly as drastic as crossovers.

In each task category, boosting results (mean) are shown via fitness values 
measured on either the golden set or the evolved set for three separate 
regexes; initial, “no crowd” and “crowd”.

Characterizing the boosting process in three dimensions: the number of 
generations, the number of generated strings, and the measured consensus for 
classification tasks.



Evaluation: Findings

Running times:
Pair-wise boosting for each task averaged from about 
4 minutes and 37 minutes per pair.

Overall cost:
Performing program boosting across all four tasks 
ranged between 41 cents and 3 dollars per pair.

Left: Running times for each task
Right: Costs for Mechanical Turk



➔ A semi-automatic program synthesis technique using a set of initial crowd-sourced programs that finds the 
best result by crowd-sourcing a training set for a measure of fitness

➔ An implementation for program boosting algorithm involving a genetic programming technique with crossover 
and mutation algorithms

➔ CrowdBoost represents regular expressions using Symbolic Finite Automata (SFAs). This is most likely the first 
work to use genetic programming on automata over a complex alphabet, UTF-16 in this case

➔ An evaluation of this program boosting technique over four case studies, which yielded an average program 
boost of 16.25% over 465 pairs of regular expressions. The results also showed consistency across the tasks 
and sources of regular expressions, giving support to the generality of their approach

In Summary



How can crowd-sourcing programs and examples 
go wrong and affect program boosting?

Discussion



How will this technique scale on pieces of code? 

Discussion



How do you know when to stop crowd-sourcing?

Discussion



Is this approach worth the amount of time it takes 
to get the results?

Discussion



Do we know that the final program is the most fit?

Discussion



Program Boosting Powerpoint Presentation -> google.com
Symbolic Automata -> cs.wisc.edu
Regular Expressions -> code.tutsplus.com
Genetic Programming -> geneticprogramming.com, wikipedia.org
Pairwise Testing -> tutorialspoint.com
Genetic Algorithms vs Genetic Programming -> stackoverflow.com

References

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CD8QFjADahUKEwiQxdCG2NbIAhWEGB4KHSJ-BC0&url=http%3A%2F%2Fpages.cs.wisc.edu%2F~loris%2Fpapers%2Fpopl15crowdboost.pptx&usg=AFQjCNFA547ugbQ1jhH2h8JY37-Y58HXCw&bvm=bv.105814755,d.dmo&cad=rja
http://pages.cs.wisc.edu/~loris/symbolicautomata.html
http://code.tutsplus.com/tutorials/8-regular-expressions-you-should-know--net-6149
http://www.geneticprogramming.com/Tutorial/
https://en.wikipedia.org/wiki/Genetic_programming
http://www.tutorialspoint.com/software_testing_dictionary/pairwise_testing.htm
http://stackoverflow.com/questions/3819977/what-are-the-differences-between-genetic-algorithms-and-genetic-programming

