Program Boosting:
Program Synthesis
via Crowd-Sourcing

Robert A. Cochran, Loris D. Antoni, Benjamin Livshits,
David Molnar, and Margus Veanes

slide author names omitted for FERPA compliance

Problem

How can we use crowd-sourcing to hoost
)rogram accuracy where the program's initial
specification may be open to interpretation?

Key Insight

Regular Expressions

e 4
e 2
e 2

Lack an easy-to-formalize specification
Different regexes cover different cases
Surprisingly difficult to implement addressing
all the tricky corner cases

Plenty of room for ambiguity

CrowdBoost

e 3

-

Pose a tricky programming task as a crowd-
sourcing challenge

Describe the task in question in a very loose
form of specification

Provide positive and negative examples (“the
golden set”), giving a partial specification
Blend imperfect solutions together to yield a
solution of higher quality using a genetic
programming approach

Refine the result using a two-crowd approach

(andidate Blend Training Set .
: \I—» programs raining Set P X

rograms

®
X

Untrained Crowd

oy Do

(regular computer
More users)
Accurate

Program

Example

q . BOUNTIFY Signin % Signup
=> Post a programming task to Bountify:

e CER T RS UROR CI U CU < couIar expression to validate US phone numbers
phone numbers" New here? L

Ple rrite a regular expression that validates a US 10-digit phone numbers
with an optional US country code (1). Note that we are asking for original work

Please do not copy your answer from other sites

9 _|_a ke '[he ﬁ I’St -7) Su b m iSSiO nS All inputs below should be accepted by your regular ex

awarded to Researcher

Tags
perl
regular expression
ir r'egu\ar expression
PHP

javascript

W Tweet (1 submit

Please provide the regular expression in the form /* YOUR ANSWER IS HERE $/ as part of your answer. htips-/Zbountity.ca/5b
ttps-//bountify. co/5b
Please test your regex on the samples provided before submitting :

Example

/».'['2_9] \d{2}-\d{3}-\c{4}$/

A reqular expression for a phone number

Example

Genetic Programming Algorithm

Example

=> Represent each regular expression as a
Symbolic Finite Automaton

=> Manipulate each SFA within a genetic
programming algorithm

Example

=> Perform crossover operations on the candidates

parent {

parent 2

= PRI S

ABIEBEF o H

HEEEEEEE oo

Example

=> Perform mutation operations on the candidates

before mutation 4 =] i Y

after motation 2 b Bl B BEE a8

Example

e 2

amazonmechanical turk

Filter the new examples by human evaluation via
Mechanical Turk, and update our candidates.

Run fitness tests on the candidates and select the
best.

Submit our resulting population back to the head of
the main algorithm.

ask

Repeat the process until we find a perfect solution, or 7'3:”_:55_1 5
we run out of money . s

lowing Phone Numbers, classify whether it is Valid or Invalid,

Example

Task: Phone numbers Fitness: 0.8979591836/3469

“((((CCCT02-91p+1(10-9N0\x20-.1[0- 9] ((|+1(("\x20~.]0)[0-91)([0-91[0-9][0-9]10-9][0-9][0-9][0-9][0-9][0-91|{0-9][0-91[0-9][0-9]{0- 91r\x20-][0-9][0-9][0-91[0-9])| (([02-9]}-1 ([0-
911\x20-.J10-91)](}-1((|"\x20-.J0)I0-91)[0-91[0-9]r\x20-.1({0-9]10-9]{0-91{0-9]0-91{0-91[0- 91][0-91[0- 91[0- 91r\x20-.1[0-91[0-91[0- 91[0- 91| ((102- 9|+ ([0- 91| \x20-.J10- 91| (|1
((J\x20- 10)I0-91)[0-91{0-91)(((0- 9][0 9]{0-91[0-91[0-9]{0-91(0-91|{0-9110-91{0-911\x20-][0-9][0-9][0-91(0-9D)](\x20-]([0-91{0-91(0-91{0-91[0- 91[0- 91[0- 91| [0-9][0-9](0-9]

[\x20-.1[0-91{0-91{0-91{0-91))){1(—)*((([0-91[0-91{0-9]([0-91{0-91{0-91[0-91[0-91[0- 9]([0-91)7|[0-91[0-91[\x20-.]| 0- 91{0-91{0-911\x2 0- 1){0-91[0-91{0-91{0- 91} [0-9]([0-91[0-I]
[0-9][0-9]10-9]{0-9]0-9]{0-9](0- 9]|[0 91{0-91{0-910-9110-911\x20-.]{0-9]{0-91{0-91[0- 91))|(({0- 91[0- 91[\x20-]|[0-91{0-91{0-911\x20-.1)|([0- 91[0- 91{0-911\x2 0- J)([0-91{0-9]1(0-9]
[0-9][0-91{0-91{0-91|{0-91{0-91[0- 911\x20-][0- 91[0- 91{0-1{0-91))] (([0-91{0-91)]0-91{0-910-91))] ({0-91{0- 91[0- 91))(({0- 91{0- 91[0- 91[0- 91{0-1{0-910-91|{0-91[0- 91[0- 91 \x20-]
[0-9][0-91{0-91{0-91)]1\x20- J({0-91[0-9110-91{0-91{0-91{0-91{0-91|[0- 91{0-91{0-11\x20- 1{0-91[0-910-910- 9| L) T\x20- J(L _)*(((C(CC({0-91[0- 91 {0-91[0-91[0-9)0-91{0- 91
(0-9]([0-91)2|([0-91{0-911\x20-.]|0-91(0-910-911\x20- 1){0-91{0-91{0-91{0- 91| ([0- 91r\x20-.1|([0-91[0- 91[\x20-.1)({0-91{0-910-91[0-91{0-91{0-91{0- 91][0- 91[0- 91[0- 91r\x20-][0~
91[0-9][0-9]10-91))}1[0-91[0-9]{0-9]([0-9][0-9][0-91[0-9][0-9][0-9]([0-91)2|([0-91[0- 91[\x20-.]| 0-9]0-9][0-9](\x2 -)I0-9][0-91[0-91[0- 91))] (10 2-9]|-L([0-9]|(10-91)|L([0-9])
(10-9]0-9]{0-91{0-9]{0-91[0-9][0-9][0-9110-9]|0-9]{0-9]0-9][0-91[0- 91 \x20-.]0-910-9][0-91{0- 91| (1 ([0-9][0-9]1\x20- J|[0-91[0- 91[0- 911\x20-.1)|(([02-9]}-1 (10-9|([0-91)|1
(10-91)[0-91[0-9]r\x20-.1)(f0-91[0-91{0-91{0-9][0-91[0- 91[0-9]|[0-91[0- 9][0-91\x20- J[0-91[0-91[0-91[0- 91))](~L[\x20-]| 1[\x20-.)(([0- 91| [0- 91)([0- 91[0- 91[0- 9][0- 9](0- 91{0-91[0~
91[0-91[0-9]|[0-91{0-9]{0-91{0-910-911\x20-][0-91{0-91(0-91(0-91)] [0- 91| T0-91)[0-91[0- 91r\x20- 1([0-91{0-91(0-91(0-910-91{0-1[0-91][0-91{0- 91{0- 91[\x20-.1[0-91[0-91{0-9I{0-
910))|(([0-9D]([0-91[0-91)(({0-91[0-91{0-91{0-51{0-910-91{0-9]|[0- 91[0- 91{0-11\x20- J[0-51{0-910-91i0-9T)|[\x20-.1([0- 91{0-51{0-91[0-91i0-9]1(0-91[0- 91j[0-91{0-91[0-911\x20-]
(0-9][0-9]10-9110-91)|((L([0-9]{0-91)|{0-9][0-91{0-91)] (([02-91}-L([0-91|([0- 91| L([0-91)[0-G1[0- 91| (L [\x20-]| LT\x2 0- J)([0-9]] [0-9]){0-91[0-91)((T0-910-9]{0-91[0-9][0-9]
[0-9][0-91]{0-91{0-91(0-9]1\x20-.]0-91{0-91[0- 91{0-91)|[\x20-](10-91{0-91{0-91[0- 91{0-91{0-91{0- 9]|[0 91{0-91{0-911\x20-.1[0-910-91(0-91[0- 91

Evaluation: Experimental Analysis

Golden Set
Initial Examples
94+ & 111 -

Specification:

Phone, Email,
Date, or URL

A
(andidate regexes obtained
from developers from Bountify
(14), Regexlib (4), and other
sources (19)

Blend Candidate
Select Successful)
: Programs:
(andidate
&_ Programs Crossover &
Mutation
&=
=
oy
E Measure fitness Updated set of
& using golden - Output Program considered
and refined with best fitness programs and
b example sets examples
(|

(lassify new examples

using MechanicalTurk as
Valid or Invalid and add to
evolving training set

Experimental
Pairs

Fvaluation; Initial Data

I-'_\.‘ 1p|e den set | Candidate Candidate regex source:
Task Specification regexes | Bountify Regexlib Other
0

Phone numbers https://bountify.co/Eb Phone numbers 5

Dates https://bountify.co/Ev g Dates 2

Emails https://bountify.co/bec Emails 3

URLs https://bountify.co/bf - . URLs 3
Specifications provided to Bountify developers. The last two columns The number of examples in the golden set and the number of candidate
capture the number of positive and neqative examples (a subset of the regexes in each case study.

golden set) given to workers in the task specifications.

Regex character length SFA state count
3% S0% 75% Max | 25% 50% 75% Max

Distribution of initial accuracy (fitness)
of candidate reqular expressions by
source. Qverall, initial fitness values
hover between .5 and .73, with none of
the regexes being either “too good” or
“too bad”.

Phone numbers

Dates
Emails

URLs

Summarized size and complexity of the candidate regexes by length and by
number of states in each resulting SFA.

Evaluation: Findings

The regular expressions for each of the tasks were
tested for accuracy on positive and negative examples
in two sets, the golden set and the evolved set.

Golden set can be manipulated by adding and removing
examples to influence accuracy measurements.

Evolved set is more representative since it evolves
naturally through refinement and crowd consensus.

High-level results obtained from the boosting process
are consistent across all tasks showing an average
boost of 16.25%.

Evaluation: Findings

EVALUATED ON. GOLDEN SET EVOLVED SET Generations | Generated atrmgs Consensus
2R HHE T4 g e - T 1| 1+ ;
Phone numbers| 7 & 10

Phane numbers Dates 10 10 10
e . Emaile 5 565

malls = 3 x
URLs .67 0.91| n Kt : URLs 10 10 10
In each task category, boosting results (mean) are shown via fitness values — Characterizing the boosting process in three dimensions: the number of
measured on either the golden set or the evolved set for three separate generations, the number of generated strings, and the measured consensus for
regexes, initial, “no crowd” and “crowd”. classification tasks.

TOSSOVELS fthnus:-mds] e Successful crossovers Mutations (thousands) %z Successful mutations
: 0% 75% Max 25% 505 5 dax%% | 29% 50% 75% Max | 25% S0% T5%

Phone numbers | i 8 3 140 | 0002 0071

L

Dates : 08 2 1M1 ol 1.51
Emails : 22 165 .45 1.62
UELs | § 18 B0 180 0.8% .62

Statistics for the crossover and mutation process across the tasks. The number of crossovers produced during boosting is in ten of thousands, but only a small
percentage of them survive to the next generation. The number of mutations is smaller (single thousands), and their survival rate is somewhat higher. This can be
explained by the fact that mutations are relatively local transformations and are not nearly as drastic as crossovers.

% Max

Evaluation: Findings

Running times:
Pair-wise boosting for each task averaged from about
4 minutes and 37 minutes per pair.

Overall cost:
Performing program boosting across all four tasks
ranged between 41 cents and 3 dollars per pair.

]

g
E
£
4
£
=
E‘ a0
o
m

o

Left: Running times for each task
Right: Costs for Mechanical Turk

In Summary

=> A semi-automatic program synthesis technique using a set of initial crowd-sourced programs that finds the
best result by crowd-sourcing a training set for a measure of fitness

=> Animplementation for program boosting algorithm involving a genetic programming technique with crossover
and mutation algorithms

> (rowdBoost represents regular expressions using Symbolic Finite Automata (SFAs). This is most likely the first
work to use genetic programming on automata over a complex alphabet, UTF-16 in this case

=> An evaluation of this program boosting technique over four case studies, which yielded an average program
hoost of 16.25% over 465 pairs of regular expressions. The results also showed consistency across the tasks
and sources of regular expressions, giving support to the generality of their approach

Discussion

How can crowd-sourcing programs and examples
g0 wrong and affect program boosting?

Discussion

How will this technique scale on pieces of code?

Discussion

How do you know when to stop crowd-sourcing?

Discussion

|s this approach worth the amount of time it takes
to get the results?

Discussion

Do we know that the final program is the most fit/

References

Program Boosting Powerpoint Presentation -> google.com
Symbolic Automata -> cs.wisc.edu

Regular Expressions -» code.tutsplus.com

Genetic Programming -> geneticprogramming.com, wikipedia.org
Pairwise Testing -» tutorialspoint.com

Genetic Algorithms vs Genetic Programming -> stackoverflow.com

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CD8QFjADahUKEwiQxdCG2NbIAhWEGB4KHSJ-BC0&url=http%3A%2F%2Fpages.cs.wisc.edu%2F~loris%2Fpapers%2Fpopl15crowdboost.pptx&usg=AFQjCNFA547ugbQ1jhH2h8JY37-Y58HXCw&bvm=bv.105814755,d.dmo&cad=rja
http://pages.cs.wisc.edu/~loris/symbolicautomata.html
http://code.tutsplus.com/tutorials/8-regular-expressions-you-should-know--net-6149
http://www.geneticprogramming.com/Tutorial/
https://en.wikipedia.org/wiki/Genetic_programming
http://www.tutorialspoint.com/software_testing_dictionary/pairwise_testing.htm
http://stackoverflow.com/questions/3819977/what-are-the-differences-between-genetic-algorithms-and-genetic-programming

