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Bug Diagnosis and Fault Localization
Given: A program’s source code and a failing test input

Goal: Identify a set of program locations which may be causing the failure

Currently, mostly a manual process; existing automated 
tools are not widely used



Research Questions
1. How can we perform automated bug diagnosis, specifically fault localization?

2. How to find root causes of program failure without including many false 
positives or eliminating the true root cause from the list of candidates?

Contributions
1. A “a novel invariant-based approach for fault localization” which provides more 

precise fault location candidates than other methods.

2. A set of heuristics for pruning false positive fault location candidates from the 
diagnoses results list.

3. An evaluation comparing the system with existing approaches, using real bugs 
from a larger and more diverse set of applications than in previous studies.



Approach:
Key Ideas:

Combine delta debugging with likely invariant 
analysis to see which likely invariants are 
invalidated on failing inputs

1. Generate likely invariants using training 
inputs close to failing input

2. Use filtering heuristics to reduce the 
number of false positives, while making sure 
that the true root cause is not eliminated 



Example
● Error uint year equal to 0 is 

decremented 
● large negative number when cast 

as a int in line 14. 
● Error propagates, causing a 

buffer overflow at line 31. 
● While line 31 causes the crash, it 

isn’t the root cause of the 
problem.

● We can see that program crashes 
when year=0 and month <=2



Input Generation

Given source code, failing input and (optional) specification containing valid 
tokens:

● Generate lexicographically close “good,” non-failing program inputs

● “inp-gen-delete” and “inp-gen-replace” algorithms

● Both use the ddmin algorithm

● Can also use to generate some “bad” inputs

● Use the good inputs to generate likely invariants, bad inputs to see 
which ones fail (failing invariants = candidate bug locations)



Step 1:Likely program invariants
● Using ddmin, take bad input *t-> [year=0, month=2, day=20]
● Produce similar but non failing inputs, such as *t->[year=1,month=4,day=21]
● Uses inputs to find range invariants, limiting to load,store and function return 

values.
● Possible Invariants: calc_daynr and calc_weeday always return positive ints.
● When ran on failing inputs, some invs fail, giving a number of candidate root 

causes.
● With this method, our example contained 95 failed invariants.



Filtering False Positives
1. Dynamic Backwards Slicing
● Find and discard invariants that don’t affect the faulting instruction

○ Giri - a custom backwards-slicing compiler; works with LLVM to instrument code to record: 

■ basic block exits

■ memory accesses and their addresses

■ function calls and returns. 

○ Use this information to create a “backwards slice” representing statements that affect the fault 
symptom

○ Remove all invariant locations that aren’t a part of the slice from the candidate fault location 
list



Step 2: Dynamic Program Slicing
● Remove failed invariants that do not contribute to the crash.
● Failed invariants relating to str cannot not be the root cause, and are filtered 

out. 

● About 62% of our failed invariants are filtered out, leaving 36 left.
● These function return variables do contribute to weekday.
● These invariants will hold.



Filtering False Positives
2. Dependent Chains of Failures

● Use Dynamic Dependence Graph to filter out dependent chains of failing 
invariants

○ DDG = Graph(N, E) where N = set of instructions executed in a given run of the program, E = 
ni → nj if instruction nj is dependent on instruction ni 

○ Can use depth-first-search

3. Multiple Failure-inducing Inputs

● Using input construction algorithms, construct more “bad” inputs

● Use previous filtering techniques to generate a list of relevant failing invariants

● Take intersection of these failing invariants for all generated inputs



Step 3: Dependence Filtering
● Errors propagate through programs. 
● Eliminate one of our two invariants 
● Depends on a failed invariant with no 

other intervening instructions.
● This step removes about 55% of 

remaining invariants, leaving around 16.

Inv Failed
calc_daynr
return>0

Inv Failed
calc_weeday
return>0

Symptom 

Not a root cause 



Step 4: Multiple Inputs
● Last 3 steps were performed using a single input.
● Remove invs that arise from chance or that are input dependent.
●
● For one run, the invariant as month>0 is found
● This will fail on failing input where *t->[year=0,month=-1,day=30]
● Using a new input where *t->[year=0,month=1,day=30], this inv will not fail.
● Taking intersection allows us to filter these false positives.
● This step reduces candidates by 25%, leaving 12 invariants left.



Step 5: Feedback to Programmer
● True location of the crash maybe not be within the invariants.
● Inv on return value of calc_daynr failing to be positive indicates the location of 

the root cause in this case. 
● The program will present the parts of the program that are used to calculate 

the return value of calc_daynr (lines 6, 8, 9, 10, 13 and 14)
● Inv hints to temp being very large
● temp is calculated using year (13)
● year is decremented, causing                                                                                                

overflow. 
● Root cause found.



Evaluation - Applications
● Tested on software using C/C++ (LLVM compiler)

○ Squid HTTP proxy server
○ Apache HTTP web server
○ MySQL database server

● Table shows different characteristics of each bug (lines of code executed etc.)



Number of Root causes & False positives
● Number of Root Causes

○ Dynamic Backward Slicing removed 80% of false positives (Bugs 6, 1, 8)
○ Dependence Filtering removed 58% of false positives (Bug 1: best case 70%) 
○ Multiple faulty inputs removed little to none



Finding True Root Causes 
● Root cause in final step for 7 out of 8 bugs
● Training sets can produce different diagnosis with different input
● Bugs 7 & 8: significant reduction

○ large Src-expr trees

○ executed 6000 and 9000 
static source lines



Comparison with Tarantula and Ochiai
● Performs analysis on statement execution given inputs (Statistical)

○ Statements ranked in decreasing order for similarity

● Performance of correlation
○ Good - Bug 5 (Control-Flow divergence)
○ Bad - Bug 6 (Success & Failure inputs)

■ executed on same 
root causes 

○ performed well on 2 out of 8 bugs



Limitations
● Only LLVM Compatible
● Missing Code bugs

○ Initializations
○ Concurrency

● Robust Input Generation
○ Multiple fault dropped root cause

● Does not report valuable information
○ invariant failures and values



Discussion
● How useful is this tool if it only returns load instructions, store instructions, 

and method calls as candidates for fault locations?

○



Discussion
● As is, the tool only detects range invariants. What other types of invariants 

should it detect?

○



Discussion
● How could we modify this so that it detects missing code bugs, or 

concurrency bugs?

○



Discussion
● Is it more important to reduce the number of false positive fault location 

candidates, or to make sure that the true fault location is not thrown out of the 
candidate list?

○



Discussion
● This tool uses the LLVM compiler, implying that it works with C and C++ code. 

Can it be extended to other languages as well?

○


