
slide author names omitted for FERPA compliance



● Can the refactoring process be simplified? 

● Can the refactoring process be made to be more flexible?

● Can automated refactoring be used to apply refactorings to the whole program based on an 
example refactoring by the developer rather than forcing a developer to follow a pre-set refactoring?



● Base the refactorings off of changes made by the user rather than having the user use refactorings 
presented to them by the IDE

Begin refactoring 
phase

Perform manual 
code changes

Ask tool to 
complete 

refactoring



1. A new interface for refactoring tools, where the user indicates the desired transformation with 
example edits and the tool synthesizes a sequence of refactorings that include the edits. 

2. A novel technique for synthesizing refactoring sequences via heuristic search over pruned 
programs. 

3. An implementation RESYNTH, whose architecture minimizes the effort required to add new 
refactorings. 

4. An initial evaluation of RESYNTH, showing it can synthesize complex refactoring sequences for real 
examples. 



● Same interface for each refactoring process

● A sequence of refactorings becomes much easier

● The refactorings are applied as a unit

● Adding a new refactoring is easier and cleaner





The heart of RESYNTH is a search strategy for discovering appropriate refactoring 
sequences based on a small number of user edits. RESYNTH takes the following 
approach:

 

Capture program 
change

Synthesize a local 
refactoring 
sequence

Extrapolate a 
sequence of full 

refactorings





● Create an AST for the original code
● Generate an AST for the changed code
● Capture the difference between the two AST’s and get rid of the rest of the AST as repeated 

sections of the AST is redundant in this case



● Generate search space of AST’s using different refactorings
● A* search through the refactorings to find the best way from the original AST to the user edited AST
● Use edit distance or expression difference as a heuristic for the A* search



● Perform extraction sequence on local refactorings
● Input local refactoring pattern into full sequence of patterns that can use same refactoring as laid out 

in example by user





While BeneFactor and WitchDoctor also infer refactorings from user edits, they differ from our system in 
that:

 (1) they do not require the user to indicate a refactoring is occurring
 (2) they cannot perform transformations requiring a sequence of refactorings. 

● While (1) can be an advantage for novice users, requiring the user to indicate the start of the 
refactoring enables the tool to discover more complex sequences, and allows for performing several 
independent refactorings “atomically.”



● Some examples of refactoring and how ReSynth worked on them. 
● While Eclipse provides an implementation of INTRODUCE PARAMETER, it fails to handle this 

example. 



● Used additional testing by generating java classes with a few methods and variables
● Then applied edits to these class
● Used the tool to try to preserve the edits. 

 









● We recruited six participants: two undergraduate students, three graduate students, and one 
professional. 

● Brief demonstration of RESYNTH
● We gave each participant a set of three refactoring tasks 
● Asked them to complete the tasks using either RESYNTH, Eclipse’s built-in refactorings, or manual 

editing. 



What is the scalability of this tool within the code?



What is the scalability of this tool within the code?

This depends on your definition of scalability. If you have really long code with many decently simple 
enough refactorings, there is no reason why this tool should not work on this. However, the more 
complicated the refactorings get, the harder it will be for this tool to perform, as the search space for the 
A* algorithm will grow to be large. 



Could this approach be used to tackle other large scale code changes? 



Could this approach be used to tackle other large scale code changes? 

We believe yes. While the resynth tool deals directly with refactorings and probably could not be extended 
to other code changes, the approach as a whole of finding the difference between program AST’s and 
performing an A* search to derive some sort of desired property out of the code could be useful in other 
areas of computer science.



Would this tool help to speed up the development process? 



Would this tool help to speed up the development process? 

Yes, this tool can speed up the process quite a bit as it can eliminate time spent on long refactorings of 
code. Even just extracting out repeated lines of code into small methods can take time out of 
development, and this tool can find and correct all those cases that you may spend time looking for and 
correcting.



Is there a potential this tool could over-refactor the code and cause a nuisance? 



Is there a potential this tool could over-refactor the code and cause a nuisance? 

Yes, if a user is not careful he may make a pretty generic change or not see parts of code that he does 
not want changed and accidentally cause refactorings in the code that he did not want.



Only 6 people were used in this user study. Is that enough to judge the usefulness of the tool? 



Only 6 people were used in this user study. Is that enough to judge the usefulness of the tool? 

This is just a personal opinion, however we feel that no it is not enough people. 6 people is just too small a 
number of people trying out a tool to really see if it will go to good use. There is a huge amount of diversity 
in coding styles and preferences in computer science and this can’t really be represented by so few an 
amount of people. Also, we feel it would be good to have a few more professionals test out this tool, as it 
could give a more accurate representation of its usefulness.


