JMassAmbe

Making Offline Analyses
Continuous

Kivang Muslu, Yuriy Brun, Michael D.
Ernst, David Notkin

slide author names omitted for FERPA compliance

Definitions
Challenges

Key ldea

Research Questions
Discussion

m Developer’s point of view

m Program at certain point in time

Snapshot 1

<f» enter your source code or insert template or sample or your template

1~ /* package whatever; // don't place package name! */

2

3 import java.util.*;

4 import java.lang.®;

5 import java.io.*;

6

7= /* Name of the class has to be "Main"” only if the class is public. */
& class Hello

9~ {
18 public static wvoid main (String[] args) throws java.lang.Exception
11~ {

12 System.out.println("Hello World“b;

13 }

14 }

Snapshot 2

<> enter your source code or insert template or sample or your template

1~ /* package whatever; // don't place package name!l */

z

3 1import java.util.*;

4 import java.lang.™;

5 import java.io.*;

6

7= /* Name of the class has to be "Main" only if the class 1s public. */
& class Hello

9~ {

18 public static void main (String[] args) throws java.lang.Exception
11 - {

12 System.out.printin{"Hello C5521/621 Students!"b;

13 1

14 }

m Runs on a snapshot
m Gives feedback

m 2 types:

m Offline
m Continuous

Offline Analysis

m No human input after execution

m FindBugs
m Eclipse plug-in
m Static code analyzer
m Helps detect bugs
m Gives feedback to snapshot

FindBugs

| 1] FindbugsExample,java x

package com.infosupport.peterhe;
import javax.annotation.Nonnull:;

public class FindbugsExample {

public static 5tring sayHello (EMonnull String message) {
return "Hello " + message;

bt

public =static wvoid main (String[] args) {
System.out.println(savHsello (noll}) ;

5
| 5
&

H C NP: Methed call in com.infosupport.peterhe.FindbugsExarmple.maini5tring[]) passes null to a nonnull
parameter of sayHello(String)

£

Continuous Analysis

m Runs constantly and informs
developers with up-to-date feedback
m Continuous FindBugs
m Faster results

m Constant
m Not as distracting to developer

Continuous FindBugs

4] VectorClock java &3

3 @0verride
a public boolean equals(Object object) {
if(this == object)
return true;
if(object == null)
return false;
if(!object.getClass().equals){VectorClock.class))
return false;
VectorClock clock = (VectorClock) object;

return versions.equals(clock.versions);

¥8 FindBugs Results 22

Findbugs standard output:

M B Eq: voldemort.versioning.VectorCloc/ equals{OBjec] Tail for subtypes AtVec <) VecorClockjava &2

M B Eq: voldemort.store.socket.SocketDestination.equals(Object) fails for subtypes @0verride
M B Eq: voldemort.serialization.SerializerDefinition.equals(Object) fails for subtypes & public boolean equals(Object object) {
M B Eq: voldemort.store.StoreDefinition.equals(Object) fails for subtypes At Storel = if(this == object)

return true;
if(object == null)
return false;
if(!(object VectorClock))
return false;
VectorClock clock = (VectorClock) object;
return versions.equals(clock.versions);

¥ FindBugs Results &2

Findbugs standard output:

M B Eq: voldemort.store.socket.SocketDestination.equals(Object) fails for subtypes At SocketDestination,)
M B Eq: voldemort.serialization.SerializerDefinition.equals(Object) fails for subtypes At SerializerDefinition.
M B Eq: voldemort.store.StoreDefinition.equals(Object) fails for subtypes At StoreDefinition.java:[line 355]
M B Eq: voldemort.store.slop.Slop.equals(Object) fails for subtypes At Slop.java:[line 131]

Continuous vs Offline

= Runs constantly m Require more work

m Runs in background from developer

m Does not delay or m Interferes with
block developer code workflow

m Simplifies developer' | g Delay or block
s workflow developer code

Challenges

m /solation
m should not prevent developer from
making new changes
m should not alter code while developer is
working on it
m Currency
m when analysis is optionally restarted,
old results marked “stale”
m should make results available as soon
as analysis completes

m Codebase Replication
m A novel approach
m [urns offline into continuous
m |Incorporates 4 principles

Research Question 1

How does Codebase Replication solve
the challenges of isolation and currency?

Solve the Challenges

Codebase Replication has 4 principles:
m ‘Replication
m Buffer-level Synchronization
m Exclusive Ownership
m Invalidation Detection

Overcoming Isolation

m Replication - copy of code
m Buffer-level Synchronization - run tool
on latest copy of code

Overcoming Currenc

m Exclusive Ownership - request write
access to program

m |nvalidation Detection - identify stale
changes

Codebase Replication

continuous analysis
lnr

Developer’s :> Cnd‘eba“ | Copy
codebase B?F‘l'cat' codebase

m An open source implementation of
Codebase Replication within Eclipse
m A wrapper to convert offline analyses

to continuous
m FindBugs into Continuous FindBugs

continuous analysis
offline analysis

Previous Approaches

m Manually managed copy codebase
m Trigger-based analysis
m Re-architect an offline analysis

Research Question 2

How efficient is Codebase Replication
compared to re-architecting the offline

analyses to work continuously?
m Overhead <= 2.5 ms
m Initial synchronization <= 2.5 ms

Case Stud

Study on SolsticeCT - continuous testing

plug-in and a buggy program
m Speeds up discovery of unknown bugs
m Makes debugging information available
sooner
m Unobtrusive

Research Question 3

m How difficult is it to implement Solstice
wrappers”?

m Just 800 lines of code!
m Just 18 hours to implement!

Discussion Question 1

How likely would a new programmer use
this tool compared to a more experienced
one? Why"?

Discussion Question 2

Would this scale well to larger and more
complex analysis tools?

Discussion Question 3

Would all offline tools benefit from being
converted to continuous?

Discussion Question 4

Will this change the way we look at
development and analysis tools?

Discussion Question 5

Can this approach work outside of an
IDE?

Thank you!

References

http://homes.cs.washington.edu/~mernst/pubs/offline-continuous-esecfse2013-slides.pdf

http://homes.cs.washington.edu/~mernst/pubs/offline-continuous-esecfse2013-slides.pdf
http://homes.cs.washington.edu/~mernst/pubs/offline-continuous-esecfse2013-slides.pdf

