
Automatic Error Elimination by Horizontal Code
Transfer Across Multiple Applications

Stelios Sidiroglou-Douskos Eric Lahtinen Fan Long Martin Rinard

slide author names omitted for FERPA compliance

Motivation

● Common runtime errors:

○ Integer overflow

○ Out of bounds access

○ Divide by zero

● Many existing programs already protect against these errors.

● You may not anticipate these errors, but someone did.

● Automatically grab the proper checks from existing programs to protect
against runtime errors above.

Research Questions

1) Can errors in software applications be eliminated by generating fixes based
solely off of the binaries of different applications that protect against these
errors?

2) Is it enough to compare only the inputs (as opposed to the functionality) of
two different applications in order to correct errors?

3) Can an error in an older version of a software application be resolved by a
targeted update without the disruption often associated with a full upgrade?

Contributions

● Horizontal code transfer - The novel concept of transferring code from a
donor application to a recipient application.

● Code Phage (CP) - A system that realizes horizontal code transfer using only
the binaries of donor applications in order to fix runtime errors in recipients.

Key Idea: Definitions

● Recipient: The application containing a runtime error which needs to be fixed.

● Donor: The application that protects against the same runtime error.

● Seed input: An input that is successfully processed by the recipient
application.

● Error-triggering input: An input that triggers a runtime error in the recipient but
not the donor.

Key Idea: High-level

Technique - Error Discovery
● Run DIODE (automatic error discovery tool) on recipient application to identify

seed and error triggering input
● Example : CWebP - Converts image to WebP format

○ DIODE identifies overflow error for height = 62848 and width = 23200

int ReadJPEG(...) {
width = dinfo.output_width;
height = dinfo.output_height;
stride = dinfo.output_width * dinfo.output_components * sizeof(*rgb);

 /* the overflow error */
 rgb = (uint8_t*)malloc(stride * height);
 if (rgb == NULL) {

goto End;
}

}

Technique - Donor Selection

Example : FEH - Image Viewer is identified as a donor for CWebP

Technique - Candidate Check Discovery

● Run instrumented version of donor application on seed and error triggering inputs
● Records the conditional branches influenced by the relevant input bytes
● Records the direction taken by the seed input and the error triggering input
● Candidate Check: Check at which the inputs take two different directions

Technique - Candidate Check Discovery

Example : FEH Image Viewer
define IMAGE_DIMENSIONS_OK(w, h)(((w) > 0) && ((h) > 0) && ((unsigned long long)(w) * \

(unsigned long long)(h) <= (1ULL << 29) - 1))

char load(...) {
 int w, h;
 struct jpeg_decompress_struct cinfo; struct ImLib_JPEG_error_mgr jerr; FILE *f;
 if (...) { ...

 im->w = w = cinfo.output_width;
 im->h = h = cinfo.output_height;

 /* Candidate check condition */
 if ((cinfo.rec_outbuf_height > 16) || (cinfo.output_components <= 0) ||
!IMAGE_DIMENSIONS_OK(w, h)) {
 return 0;
}

 }
}

Technique - Candidate Check Excision

● Reruns the donor with additional instrumentation to generate the full symbolic
expression tree for candidate checks

● Symbolic Expression Tree : Records how the conditions in the check were
computed by tracking the flow of input bytes

● Bit Manipulation Optimization to reduce the size of the symbolic expression
tree

Technique - Candidate Check Excision
Example : Code Phage generates the following application-independent symbolic
expression from the FEH Image Viewer

ULessEqual(32,Shrink(32,Mul(64,Shrink(32,Div(32,BvOr(64,Shl(64, ToSize(64,SShr(32,Sub(32,Add(32,Constant(8),Shl(32,Add(32,Shl (32,ToSize
(32,BvAnd(16,HachField(16,’/start_frame/content/height’), Constant(0xFF))),Constant(8)),ToSize(32,UShr(32,BvAnd(16,HachField(16, ’
/start_frame/content/height’),Constant(0xFF00)),Constant(8)))), Constant(3))),Constant(1)),Constant(31))),Constant(32)),ToSize(64, Sub(32,Add(32,
Constant(8),Shl(32,Add(32,Shl(32,ToSize(32,BvAnd(16, HachField(16,’/start_frame/content/height’),Constant(0xFF))),Constant(8)), ToSize(32,UShr
(32,BvAnd(16,HachField(16,’/start_frame/content/height’), Constant(0xFF00)),Constant(8)))),Constant(3))),Constant(1)))),Constant(8))), Shrink(32,
Div(32,BvOr(64,Shl(64,ToSize(64,SShr(32,Sub(32,Add(32, Constant(8),Shl(32,Add(32,Shl(32,ToSize(32,BvAnd(16,HachField(16, ’
/start_frame/content/width’),Constant(0xFF))),Constant(8)), ToSize(32,UShr(32,BvAnd(16,HachField(16,’/start_frame/content/width’), Constant
(0xFF00)),Constant(8)))),Constant(3))),Constant(1)), Constant(31))),Constant(32)),ToSize(64,Sub(32,Add(32,Constant(8), Shl(32,Add(32,Shl(32,
ToSize(32,BvAnd(16,HachField(16, ’/start_frame/content/width’),Constant(0xFF))),Constant(8)), ToSize(32,UShr(32,BvAnd(16,HachField(16,’
/start_frame/content/width’), Constant(0xFF00)),Constant(8)))),Constant(3))),Constant(1)))), Constant(8))))),Constant(536870911))

Technique - Check Insertion

● Run the instrumented version of the recipient
● Locate candidate points - points at which relevant input bytes are available as program

expressions in the recipient
● Remove unstable points (points which execute different values when invoked from

different parts of the application), to reduce the risks of inducing irrelevant errors
● Obtain local and global variables at insertion points and feed it to the traversal algorithm
● Traversal algorithm - gives the Names of those variables that leads to a reachable

relevant input variable
○ outputs a set of pairs where each pair has the form <p,E>, where p is the path

leading to a reachable relevant variable and E is the symbolic expression

Technique - Check Insertion
Example : Insertion point at CWebP after line 2

int ReadJPEG(...) {
1 width = dinfo.output_width;
2 height = dinfo.output_height;
3 stride = dinfo.output_width * dinfo.output_components * sizeof(*rgb);
4 /* the overflow error */
5 rgb = (uint8_t*)malloc(stride * height);
6 if (rgb == NULL) {
7 goto End;
8 }

9}

Technique - Check Translation

Technique - Check Translation
Example : Generated Patch for CWebP

if (!((unsigned long long)dinfo.output_height * (unsigned
long long)dinfo.output_width)<=536870911)) {
 exit(-1);
}

Technique - Patch Validation

Evaluation

● Code Phage was evaluated on three errors

○ Integer Overflow

○ Out of bounds

○ Divide by zero

● Recipients selected - 7

● Donors selected - 8

Results

Results: Patch Generation Time

● Minimum: 1 minute

● Maximum: 18 minutes

● Average: 6.5 minutes

● Mode: 4 minutes

Blue: CWebP example; Red: Key points

Results : Candidate Insertion Points

● X-Y-Z = W

● X: # of Candidate Insertion Points
● Y: # of Unstable Points
● Z: # of Insertion Points where no

Patch was generated

● W : # of points where successful
patch was inserted

Blue: CWebP example; Red: Key points

Results: Check Size

● X → Y
● X : # of operations in the

application-independent
representation of the
check

● Y: # of operations in the
translated check inserted
in the recipient

● Minimum: 14

● Maximum: 2

Blue: CWebP example; Red: Key points

Results: Main Takeaways

● Maximum time to generate a patch was 18 minutes and minimum was 1
minute

● Maximum check size = 14 and minimum check size = 2
● Successfully generated correct patches for all of the recipient/donor pairs
● Success highlight CP’s effective techniques

○ Check Identification Technique
○ Insertion Point Location algorithm
○ Rewrite Algorithm

Research questions (Revisited)
1) Can errors in software applications be eliminated by generating fixes based

solely off of the binaries of different applications that protect against these
errors?

2) Is it enough to compare only the inputs (as opposed to the functionality) of
two different applications in order to correct errors?

3) Can an error in an older version of a software application be resolved by a
targeted update without the disruption often associated with a full upgrade?

RQ1 : Binary Donors & RQ2: Divergent
Functionality

Runtime Error Number of
Errors
Found

Number of
Errors

Resolved

Recipients Donors

Integer Overflow 7 7 CWebP 0.31
Dillo 2.1

swfplay 0.55
Display 6.5.2-8

FEH-2.9.3
mtpaint 3.4

ViewNoir 1.4
ViewNoir 0.8.11

Out of Bounds Access 2 2 JarPer 1.9
gif2tiff 4.0.3

OpenJPEG
Display 6.5.2-9

RQ1 and RQ2 : Results

● For each of the donors, CP had access only to their binaries and not the
source code.

● Each of the recipient-donor pairs process the same input, but had different
functionalities.

● Code Phage was able to successfully generate patches for all of the recipient
applications that eliminated errors.

RQ3: Multi Version Code Transfer

Runtime Error Number of Errors
Found

Number of Errors
Resolved

Recipients Donors

Divide By Zero 2 2 Wireshark-1.4.14 Wireshark-1.8.6

RQ3 : Results

● Obtained a targeted updated by resolving error in Wireshark-1.4.14 without
performing a full upgrade to Wireshark-1.8.6

● Implemented an alternative strategy to return 0 rather than exiting when
divide by zero error is encountered. This enabled the application to continue
to execute productively

Discussion question #1

We see that CP can fix three different errors (integer overflow, out of bounds
access, divide by zero). Does it seem that CP could work on other errors?

Discussion question #2

Do you think CP could be extended to allow custom code to be executed within
the generated patch to handle specific errors?

Discussion question #3

The experimental results reflect a 100% success rate, but for a very small set of
applications. Do these results make you think CP is reliable?

Discussion question #4

The research paper was rather ambiguous regarding how the set of possible
donors was constructed. How would you obtain a list of applications that could be
candidates for the donor selection process? Do you think this affects the success

rate of CP?

Discussion question #5

Could Code Phage be used to maliciously reverse engineer specific algorithms of
closed-source projects?

REFERENCE
Sidiroglou--Douskos, Stelios, et al. "Automatic error elimination by horizontal code
transfer across multiple applications." (2015).

