
SPLat: Lightweight Dynamic Analysis for
Reducing Combinatorics in Testing

Configurable Systems

Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don
Batory, Sabrina Souto, Paulo Barros, and Marcelo d'Amorim

slide author names omitted for FERPA compliance

Terminology
Software Product Line (SPL)

● Specifies a family of programs where each program is defined by a unique

combination of features. This work only investigates boolean features-can be

present or absent

● “Configuration”, “feature combination”, and “program” are used interchangeably

Simple Example
For an example of an SPL consider a “Notepad” product line

Simple Example

Simple Example
We need to ensure the functionality over all configurations

How many configurations are there?

Simple Example
8 possible combinations of optional features

MTW =
000

001

010

011

100

101

110

111

Testing SPLs
● Testing SPL is expensive as it requires running each test against combinatorial

number of configurations

5 boolean features, gives you 32 configurations, 170 yields

~1500

combinations

Simple Example
Do we need to test all 8 combinations?

MTW =
000

001

010

011

100

101

110

111

Simple Example
Just given the model, 2 are invalid

MTW =
000

001

010

011

100

101

110

111

Simple Example
Just given the model, 2 are invalid. Can we do better?

MTW =
000

001

010

011

100

101

110

111

Simple Example
Consider MTW 100 and 101

They give the same trace!

Key Idea
Tests are often independent of many of the configurations!

Tests often focus on small part of the system

Configurations not required can be pruned from the execution

Configurations to run can be determined during testing by monitoring accesses to

configuration variables

Simple Example
Just given the model, 2 are invalid, but SPLat can reduce further

MTW =
000

001

010

011

100

101

110

111

SPLat algorithm
Given a test and feature model, instrument features to observe reads

do{
Execute test.
if feature is read push feature on stack and record assignment to state
while the stack is not empty {

look at top feature
if this feature is true in the state, (it has been explored)

pop feature from the stack and set to false
else

put feature into the state as true
if state is valid for model, break

}
}while the stack is not empty

SPLat algorithm example run
Load notepad feature model, 3 optional features to explore. Start at MTW 000

TOOLBAR is read first, so pushed onto the stack. When false, no other features are

read before the test ends, so we cover MTW -0- where “-” represents “don’t care”

00- are invalid given the feature model, so this one execution covers only 10-

configurations. (Even though WORDCOUNT doesn’t matter, we’ll assign it 0 because

the features need concrete values so MTW is 100)

SPLat algorithm example run
Next sets TOOLBAR to true as it is satisfiable, this covers -10. (Again, we’ll assign M 0

because the features need concrete values so MTW is 010). WORDCOUNT is

encountered, so it is pushed onto the stack

Next sets WORDCOUNT true, this covers -11 (sets M to 0 to execute, MTW is 011).

WORDCOUNT is popped off stack because all values have been explored, and

TOOLBAR is popped off as well for the same reason

So three executions 100, 010, and 011 are executed and cover all 6 valid configurations.

Nuances
Needs reset function to reset test conditions between runs (In our example just restart

JVM)

Might need to reset database conditions etc. In evaluation reset functionality was

already in place at GROUPON

Could optimize to synchronize between the exploration state and the feature model,

which would increase speed

Research Questions

Systematically testing SPL programs is expensive

How can this be more efficient?

How can we...

Reduce number of executions?

Reduce overhead?

Improve scalability

Contributions

Lightweight analysis of configurable programs

➔ Lightweight monitoring to speed up test execution
➔ Easily implemented in different run-time environments

Contributions - Implementation

Java Ruby on Rails

Contributions - Evaluation

Evaluate SPLat on 10 Java SPLs

Contributions - Evaluation

Identifies relevant configurations with a low overhead

Contributions - Evaluation

 Apply SPLat on 171KLOC in Ruby on Rails

Contributions - Evaluation

170 configuration variables

19K tests

231KLOC in Ruby on Rails

Evaluation
Ten configurable Java programs were converted into Subject SPLs

Tests done on subjects

LOW : optimistic

MED : average

HIGH : pessimistic

Comparable Techniques
NewJVM - spawns a new JVM for each distinct run. Each test run executes one valid

configuration

ReuseJVM - uses the same JVM across several runs. Reset function is required.

SRA (Static Reachable Analysis) - performs reachability analysis, control-flow and

data-flow analyses to statistically figure out which configurations are reachable from a

given test

RQ1: Efficiency
How does SPLat’s efficiency compare with alternative techniques for analyzing SPL

tests?

● Tests show that reusing JVM is about 50% faster than starting up a new JVM

every time

● In comparison to SRA

○ Uses less configurations because SRA is conservative

○ SPL Overhead < SRA Overhead (by a lot)

○ SPL IdealTime < SRA Time

RQ2: Overhead
What is the overhead of SPLat?

Large overhead for short-running tests

Small overhead for long-running tests

RQ2: Overhead

JTopas: Feature variables are accessed many times because they are accessed within

the tokenizing loop

MinePump: Test subject is small (580 LOC)

RQ3: Scalability
Does SPLat scale to real code?

● Groupon PWA is the codebase that powers the whole website

● Frameworks for testing: Rspec, Cucumber, Selenium, and Jasmine

● SPLat was implemented to Ruby on Rails to apply it to Groupon PWA

● Reset functions already implemented

● Highly configurable (170 feature variables)

● Set limit to configurations to 16

Does scale to real code. The implementation effort and the number of configurations

for SPLat in real tests is relatively low.

RQ3: Scalability

Reachable Configurations

Accessed Features

Most real tests indeed cover a small
number of configurations.

Discussion Question

How can effective can applying this in industry be?

Discussion Question

How can effective can applying this in industry be?

Groupon example shows the technique scales to large SPLs, however the results do not

take into account the cost of writing the reset function

(as one already existed in study)

Discussion Question

How difficult is it to implement SPLat compared to current techniques of testing SPLs

Discussion Question

How difficult is it to implement SPLat compared to current techniques of testing SPLs

The authors provided two implementations, a Java one that built on top of Korat that

integrated a SAT solver, and a Ruby on Rails implementation that didn’t use a feature

model or SAT solver (treated all configurations as valid).

Discussion Question

Can we use SPLat on SPLs with more than just boolean features?

Discussion Question

Can we use SPLat on SPLs with more than just boolean features?

Could represent ternary as boolean (just more possible configurations states)

Discussion Question

Does this solve the SAT problem?

Discussion Question

Does this solve the SAT problem?

No, uses heuristic solver, not deterministic polynomial time algorithm

Discussion Question

How is SPLat different from Korat?

Discussion Question

How is SPLat different from Korat?

Korat encodes a precondition for running the configurable system, which must be

accounted for.

