10/5/14

Speculative Analysis

Homework 2

* On bug localization

* Due Tuesday (fake Monday), Oct 14,
9 AM on moodle

Research Projects

Has everyone submitted
project ideas / paper selections?

Wednesday, we will have research idea presentations
| will present several as well
Students will have until Friday 10/10 to form groups

Decision making Quick Fix Scout Crystal Future: understanding behavior Decision making Quick Fix Scout Crystal Future: understanding behavior

000 > 000 >

Implement a new feature?
Incorporate another developer’s changes?

Fix a bug?
DECISION MAKING DECISION MAKING

Upgrade a library?
Refactor for code reuse?

Run tests?

2/25 2/25

Decision making Quick Fix Scout Crystal Future: understanding behavior

000 >

Implement a new feature?

Incorporate another developer’s changes?

Fix bug? Can we predict the future

DECISION MAKING

Developers often make decisions based on experience and intuition.J

to help make decisions?
Upgrade a library?

Refactor for code reuse?

Run tests?

2/25

Decision making Quick Fix Scout Crystal Fl{l!ue: understanding behavior Decision making Q C a h Fl{l!ue: understanding behavior
Speculative analysis: predict the future and analyze it Speculative analysis: predict the future and analyze it
speculate
current program current program

4/25 4/25

Decision making
008

Speculative analysis: predict the future and analyze it

speculate

refactor

current program

4/25

Decision making
008

Speculative analysis: predict the future and analyze it

refa
refa

current program

cto
©

refactor

refactor
tor

analyze

execute test suite

4/25

Decision making
008

Speculative analysis:

.

research questions

Are there domains for which speculative analysis is possible?J

current program

Can speculative analysis be made
computationally feasible? J

Can speculative analysis help, and not overwhelm, developers? J

4/25

Decision making
008

Speculative analysis: predict the future and analyze it

refa
refa

current program

cto
©

refactor

refactor
tor

4/25

Decision making
008

Speculative analysis: predict the future and analyze it

refa
refa

cto
©

refactor

refactor
tor

analyze

execute test suite

inform developer

of resulting test failures

4/25

Quick Fix Scout
#0000

Quick Fix Scout J

Collaborators: Kivang Muslu, Reid Holmes, Michael D. Ernst, and David Notkin

5/25

k Fix Scout k Fix Scout
o) o

public class UnresolvableType { public class UnresolvableType {

private string name;

fid

private string name;
@ Create dass ‘string’
= public void setName(String arg) { = public void se @ cCreateinterface 'string
name = arg;] name = arg # Change to Spring' (javax.swing)
1 1 @ Change to 'String’ (java.lang)
@ Change to 'STRING' (javax.print. DocFlavar)
} } @ Change to 'StringBuffer’ (java.lang)
@ Change to 'StringHolder' {org.omg. CORBA)
@ Change to 'StringReader’ (java.io)
@ Change to 'StringWriter' (java.io)
@ Create erum 'string’
© Add type parameter 'string' to 'UnresolvableType'
@ Fix project setup...
Press "Cui+1" to go to original position

Eclipse provides Quick Fixes to resolve compilation errors. J But Eclipse can't tell which fix is best. J
6/25 6/25

Fix Scout

Fix Scout
08000 08000
public class UnresolvableType { public class UnresolvableType {
Wil - 3 . - : .
1] private string name; x| private string name;
@ (0) Change to 'String’ (java.lang)
& public void se| & (1) Change to ‘StringBuffer' (ava. public void setName(String arg) {
& name = arg @ (1) Change to ‘StringHolder’ omg.CORBA) name = arg;
T @ (1) Change to ‘STRING' (javax.print.DocFlaver) 1 O create dass 'name'
@ (1) Change to ‘StringV -io) D Create interface ame’
¥ @ (1) Change to ‘Spring' (javax T & Change to 'NA' {javax.print.atiribute.standard MediaSize)
>

(1) Change to 'StringReader’
®¢ 1) Create dass 'string’
(1] (1) Create interface "string’
(1) Create enum 'string'
) Add type parameter 'string’ to ‘UnresolvableType'
@ 1(2) Fix project setup. . |
Press "C+1 to go 1o original position

@ Change to ‘Mame' {java.utll.jar. Attributes)

@ Change to ‘Mame' (avax.lang model.element)
@ Change to ‘Mame' (avax.naming)

@ Change to 'Mame' (avax. xml.soap)

@ Change to ‘MamelList' {org.w3c.dom)

@ Change to "Maming' (java.rmi)

@ Change to 'Node’ (javax.xml.soap)

@+ Change to 'Node' {org.w3c.dom)

B Create enum name’

© Add type parameter ‘name’ to UnresolvableType'
© Add type parameter ‘name’ to ‘setMame(String)’
»F :

Press 'Ci+1 to go to criginal pesiian

We can speculatively apply each fix to find out how many errors remain. J
67725

Sometimes, local fixes cannot resolve an error.) o)

k Fix Scout Quick Fix Scout
o o

[elel 1
public class UnresolvableType {)
Complex error dependencies
8 private string name;
public class ExceptionalObject {
= public wvoid exceptionalMethod() {
throw new MyException();
}

public wvoid setMame(String arg) {
name = arg;
} @ (0) UnresolvableType.java:4: 18: Change 'string’ to 'String’ (java.lang)
@ (2) Change to 'Node' (org.w3c.dom)
} @ (2) Change to 'Name' (avax.naming)
@ (2) Change to 'Naming' (java.rmi) et
@ (2) Change to 'Name' (javax.xml.soap)
@ (2) Change to 'Node' (javax. xml.soap)
@ (2) Change to 'NamelList' {org.w3c.dom)
@ (2) Change to 'Name' (javax.lang.model, element)
© {2) Add type parameter 'name’ to 'setName(String)’
© {2) Add type parameter 'name’ to ‘UnresolvableType'
@ (2) Fix project setup...
[C] {2) Create dass ‘name’
{2) Create interface 'name’
(E] {2) Create enum 'name’
@ (2) Change to 'MA’ (javax.print.attribute.standard MediaSize)
i{2) Change to 'Name' {java, utl.jar. Attributes)
Press "Crri+1" to go to original position

public class SafeObject {
= public wveoid safeMethod() {
try {
ExceptionalObject eo =
new ExceptionalObject();
eo.exceptionalMethod();

} catch (MyException e) {}

Speculation can discover remote fixes that resolve errors. | , http://quick-fix-scout.googlecode.com ,
6 /25 7/25

[e]e] le]e}
Complex error dependencies
public class ExceptionalObject {

= public wveoid exceptionalMethod() |
throw new MyException();

¥

public class SafeObject {
= public weoid safeMethod() {
try {
ExceptionalObject eo =
new ExceptionalObject();
eo.exceptionalMethod();

} catch (MyException e) {}
Iy
} 5

http://quick-fix-scout.googlecode.com
7/25

Quick Fix Scout
00080

Speculative analysis for Quick Fix

QUICKTIX quick fix
quick fix

analyze

compile

inform developer

of resulting compilation errors 8/25

00008
Exploring the future

future version
of the program

past version
of the program

present version
of the program

% %, O @
2%, C % % %
GHo, By T %
O&_d\o 0, 60 O(, /é’
% kP CNER i
9, % S (2))
@E-Qb 6&5 4@ Sy QQ
© % e
£

9/25

[e]e] le]e}
Complex error dependencies
public class ExceptionalObject {

= public wveoid exceptionalMethod() |
throw new MyException();

¥

public class SafeObject {
= public weoid safeMethod() {
try {
ExceptionalObject eo =
new ExceptionalObject();
eo.exceptionalMethod();
} catch (MyException e) {}
J ExceptionalObject.java:6: 12: Add throws dedaration to "exceptiona
th throws

Replace catch dause

Press 'Ori+1' mgo o e

http://quick-fix-scout.googlecode.com
7/25

00008
Exploring the future

future version
of the program

past version
of the program

present version
of the program

Q
% 9, %
o, % %,
S OO(/ @/{9
% & (<3
(&) 0
% %y 4,

g @
© ©

9/25

00008
Exploring the future

future version
of the program

past version
of the program

present version
of the program

% qQ
%, %, % 9, %
7 ® ? %, %
S © B %, (%)
0,.% o) O(, %
RN @, Cu
CS N)
© Cb Qb

Continuous development

o compilation [Childers et al. 2003; Eclipse 2011]
@ execution [Henderson and Weiser 1985; Karinthi and Weiser 1987]
o testing [Saff and Ernst 2003, 2004]

@ version control integration [Guimardes and Rito-Silva 2010]

9/25

Quick Fix Scout Crystal

Exploring the future

past version present version future version
of the program of the program of the program
/4 Q Ky q q s q
’%/, % % %, @ofo s, Proactive detection of collaboration conflicts |
0. %0 S o 2, 2. <.
D & %,) % ey
.°0 (& < L
S 5 ’)/ % & o3
9. /'P@ < (%) o <
% O S 7% Sy go)
B e Z) © %, 2 Y
© © 0@/ R
% ®

Continuous development

@ compilation [Childers et al. 2003; Eclipse 2011]
@ execution [Henderson and Weiser 1985; Karinthi and Weiser 1987]
o testing [Saff and Ernst 2003, 2004]

@ version control integration [Guimardes and Rito-Silva 2010]

Collaborators: Reid Holmes, Michael D. Ernst, and David Notkin

Speculative analysis is predictive.

9/25 10/ 25

Crystal Crystal
000

Version-control terminology The Gates conflict

Proactive conflict detection applies to both
centralized and distributed version control.

distributed (hg, git) | centralized (cvs, svn)
local commit: commit save
incorporate: pull and push update and commit

1/25 12/25

Crystal Crystal

The Gates conflict The Gates conflict

12/25 12 /25

The Gates conflict The Gates conflict

M M
T T
W W
Th Th
F

12 /25 12 /25

Crystal Crystal
o

The Gates conflict The Gates conflict
(@) (@)
M M
T T
w w
Th Th
F F
M M
T T

d i w
Th
'S \

12 /25 12 /25

The Gates conflict The Gates conflict
(@) (@)

M M
T T
w w
Th Th
F F
M M
T T
w w
Th Th
F F

M

12 /25 12 /25

Crystal

0080000000000

The Gates conflict The Gates conflict

Sd42m3sazndisqaz

12 /25

Crystal
0080000000000

The information was all there, but the developers didn't know it.J

Crystal

0008000000000

What could well-informed developers do?

o

e avoid conflicts

13/25

Crystal

Introducing Crystal: a proactive conflict detector

DEMO

Crystal
0008000000000

What could well-informed developers do?

e avoid conflicts

o become aware of conflicts earlier

Crystal
0000800000000

Introducing Crystal: a proactive conflict detector

DEMO

LetitBe .
hg commit ;-\,:“5

r N
@ Crystal - George E‘M
File About
master Paul Ringo John

Handle
with Care

master Jeff

I N N

tion: hg fetch
Consequences: new relationship will be AHEAD

Committers: George and Tom

http://crystalvc.googlecode.com

14 /25

0000080000000 0000008000000
Speculative analysis in collaborative development Reducing false positives in conflict prediction

speculate

ocal commit incorporate from Melinda

incorporate from master Collaborative awareness
incorporate to master

o Palantir [Sarma et al. 2003] @ CollabVS [Dewan and Hegde 2007]
o FASTDash [Biehl et al. 2007] o Safe-commit [Wloka et al. 2009]
current program analyze @ Syde [Hattori and Lanza 2010] @ SourceTree [Streeting 2010]
merge
compile
test
inform developer
collaborative relationships 1525 16/ 25
Reducing false positives in conflict prediction Utility of conflict detection

Collaborative awareness

o Are textual collaborative conflicts a real problem?

o Palantir [Sarma et al. 2003] @ CollabVS [Dewan and Hegde 2007]
o FASTDash [Biehl et al. 2007] o Safe-commit [Wloka et al. 2009] o Can textual conflicts be prevented?
@ Syde [Hattori and Lanza 2010] @ SourceTree [Streeting 2010]

Crystal analyzes concrete artifacts,

eliminating false positives and false negatives. @ Do build and test collaborative conflicts exist?

16 /25 17 /25
Are textual collaborative conflicts a real problem? Are textual collaborative conflicts a real problem?
o)

histories of 9 open-source projects: M histories of 9 open-source projects:
size: 26K~1.4MSLoC " size: 26K~1.4MSLoC
developers: 298 Th developers: 298
versions: 140,000 F versions: 140,000

M
Perl5, Rails, Git, jQuery, Voldemort, T Perl5, Rails, Git, jQuery, Voldemort,
MaNGOS, Gallery3, Samba, Insoshi w MaNGOS, Gallery3, Samba, Insoshi

Th

F

M

T

w

18 /25

18 /25

Are textual collaborative conflicts a real problem?

0
How frequent are textual conflicts?
-+

Sd42mnm3isaz2n3iisqaz

18 /25

Are textual collaborative conflicts a real problem?

Sd42mnm3isaz2n3iisqaz

]

How frequent are textual conflicts?
16% of the merges have textual conflicts.

18 /25

Are textual collaborative conflicts a real problem?

How frequent are textual conflicts?
16% of the merges have textual conflicts.

How long do textual conflicts persist?

Sd42mnm3isaz2n3iisqaz

18 /25

Are textual collaborative conflicts a real problem?

Sd42mnm3isaz2n3iisqaz

How frequent are textual conflicts?
16% of the merges have textual conflicts.

How long do textual conflicts persist?

Conflicts live a mean of 9.8 and median of 1.6 days.
The worst case was over a year.

18 /25

Are textual collaborative conflicts a real problem?

Sd42mnm3isa4z2n3iisqaz

How frequent are textual conflicts?
16% of the merges have textual conflicts.

How long do textual conflicts persist?

Conflicts live a mean of 9.8 and median of 1.6 days.
The worst case was over a year.

How long do textually-safe merges persist?

18 /25

Are textual collaborative conflicts a real problem?

Sd42mnm3is4az2n3iisqaz

How frequent are textual conflicts?
16% of the merges have textual conflicts.

How long do textual conflicts persist?

Conflicts live a mean of 9.8 and median of 1.6 days.
The worst case was over a year.

How long do textually-safe merges persist?

Textually-safe merges live a mean of 11.0 and
median of 1.9 days.

18 /25

Crystal

Crystal

Can textual conflicts be prevented? Can textual conflicts be prevented?

Where do textual conflicts come from? Where do textual conflicts come from?
93% of textual conflicts developed from safe merges.

19/25 19/25

Crystal Crystal

Can textual conflicts be prevented? Do build and test collaborative conflicts exist?

Where do textual conflicts come from?
93% of textual conflicts developed from safe merges. conflicts safe
program -
textual ‘ build ‘ test | merges
Git 17% | <1% | 4% 79%
Perl5 8% 4% | 28% 61%
Voldemort 17% | 10% | 3% 69%

Does merged code fail to build or fail tests?
’ One in three conflicts are build or test conflicts.

The information Crystal computes can help prevent conflicts.)

19/25 20/25

Crystal Crystal

Contributions of speculative analysis

Microsoft Beacon

past version present version future version
. . of the program of the program of the program
@ A centralized version control-based tool. . 4 o o %, P g
. . N . Ty G % % % S
@ Microsoft product groups are using Beacon to help identify conflicts f%”?@ ”@%_ 9% ’//;(/ o%/ O%
L 5 %) >
earlier in the development process. °d>,~o°/;¢ O/),@ 6000 %, @OO "e@
) @ %
&% % % %, é(,o oy
o o %, %
o

@ Measure Crystal's effect on conflict frequency
and persistence
o Evaluate qualitative effects on user experience

o Identify what helps and what does not

Improving developer awareness when making decisions

@ compute precise, accurate information

@ convert a pull mechanism to a push one

Additional collaborators: Kivan¢ Muslu, Christian Bird, Thomas Zimmermann

21/25 22 /25

Future: understanding behavior
@00

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions
@ informative, efficient analyses

@ inferable developer intent

Next speculations:

@ automated fault removal
@ code parallelization

@ test generation and augmentation

Future: understanding behavior
@00

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions
@ informative, efficient analyses

@ inferable developer inter*
B

‘Adobe Acrobat Updater

B %

) Adobe Acrobat is installing new updates
)S(Time remaining:

Next speculations:

@ automated fault removal
@ code parallelization

@ test generation and augmentation

23 /25 23 /25

Future: understanding behavior Future: understanding behavior
@00 @00

Expanding the space of speculative analysis Expanding the space of speculative analysis
Identify a domain with: Identify a domain with:
o likely, automatable developer actions o likely, automatable developer actions
@ informative, efficient analyses @ informative, efficient analyses

@ inferable developer inter*
B

@ inferable developer inter*
B

‘Adobe Acrobat Updater =8 = ‘Adobe Acrobat Updater =8 =

) Adobe Acrobat is installing new updates) Adobe Acrobat is installing new updates
p Time remaining: 20 seconds p Time remaining: 10 seconds

Next speculations: Next speculations:

@ automated fault removal @ automated fault removal
@ code parallelization @ code parallelization
@ test generation and augmentation @ test generation and augmentation
23 /25 23 /25

Future: understanding behavior Future: understanding behavior
@00 @00

Expanding the space of speculative analysis Expanding the space of speculative analysis
Identify a domain with: Identify a domain with:
o likely, automatable developer actions o likely, automatable developer actions
@ informative, efficient analyses @ informative, efficient analyses

@ inferable developer inter*
B

@ inferable developer inter*
B

‘Adobe Acrobat Updater =8 = ‘Adobe Acrobat Updater =8 =

) Adobe Acrobat is installing new updates) Adobe Acrobat is installing new updates
p Time remaining: 40 seconds p Time remaining: 2 hours

| | T— |

Next speculations: Next speculations:

@ automated fault removal @ automated fault removal
@ code parallelization @ code parallelization
@ test generation and augmentation @ test generation and augmentation

23 /25 23 /25

Future: understanding behavior Future: understanding behavior
@00 @00

Expanding the space of speculative analysis Expanding the space of speculative analysis
Identify a domain with: Identify a domain with:
o likely, automatable developer actions o likely, automatable developer actions
@ informative, efficient analyses @ informative, efficient analyses

o inferable developer inter* o inferable developer inter*
B B

‘Adobe Acrobat Updater =8 = ‘Adobe Acrobat Updater =8 =

) Adobe Acrobat is installing new updates) Adobe Acrobat is installing new updates
p Time remaining: 5 seconds p Time remaining: 0 seconds

Next speculations: Next speculations:

@ automated fault removal @ automated fault removal
@ code parallelization @ code parallelization
@ test generation and augmentation @ test generation and augmentation
23 /25 23 /25

Future: understanding behavior Future: understanding behavior
@00 @00

Expanding the space of speculative analysis Expanding the space of speculative analysis
Identify a domain with: Identify a domain with:

o likely, automatable developer actions o likely, automatable developer actions

@ informative, efficient analyses @ informative, efficient analyses

o inferable developer intent @ inferab| 2= _—
A USB driver has stopped working. I noticed that installing "Adobe Acrobat
update 9.2.1," led to this problem. Il swap out the update.

OK

Next speculations: Next speculations:

@ automated fault removal @ automated fault removal
@ code parallelization @ code parallelization
@ test generation and augmentation @ test generation and augmentation
23 /25 23 /25

Future: understanding behavior Future: understanding behavior
@00 000

Expanding the space of speculative analysis Automating decision making: self-adaptation

Identify a domain with:

o likely, automatable developer actions specification

@ informative, efficient analyses

@ inferable developer intent

running system

Next speculations:

@ automated fault removal
@ code parallelization

@ test generation and augmentation

23 /25 24 /25

Future: understanding behavior Future: understanding behavior
000 000

Automating decision making: self-adaptation Automating decision making: self-adaptation

generate adaptations generate adaptations

potential
systems

potential

systems specification

specification

running system running system observe

analysis

24 /25 24 /25

Future: understanding behavior Future: understanding behavior
000 008

Automating decision making: self-adaptation Future research: automation

generate adaptations

potential
systems

specification generate adaptations

running system observe

running system observe

decide

© Automating decision making: removing the developer

@ Using new automation to enrich speculative analysis

employ © Bridging requirement specification and behavioral model inference

adaptation decide analysis

24 /25 25 /25

Jacob T. Biehl, Mary Czerwinski, Greg Smith, and George G. Robertson. FASTDash: A visual dashboard for fostering awareness
in software teams. In CHI, pages 1313-1322, San Jose, CA, USA, Apr. 2007. ISBN 978-1-59593-593-9. doi:
10.1145/1240624.1240823.

Bruce Childers, Jack W. Davidson, and Mary Lou Soffa. Continuous compilation: A new approach to aggressive and adaptive
code transformation. In /PDPS, 2003

Prasun Dewan and Rajesh Hegde. Semi-synchronous conflict detection and resolution in asynchronous software development. In
ECSCW, pages 159-178, Limerick, Ireland, 2007
Eclipse. The Eclipse foundation. http://www.eclipse.org, 2011

Mario Luis Guimar3es and Anténio Rito-Silva. Towards real-time integration. In CHASE, pages 5663, Cape Town, South
Africa, May 2010

Lile Hattori and Michele Lanza. Syde: A tool for collaborative software development. In ICSE Tool Demo, pages 235-238, Cape
Town, South Africa, May 2010. ISBN 978-1-60558-719-6. doi: 10.1145/1810295.1810339.

Peter Henderson and Mark Weiser. Continuous execution: The VisiProg environment. In ICSE, pages 68-74, London, England,
UK, Aug. 1985.

R. R. Karinthi and M. Weiser. Incremental re-execution of programs. In S/IT, pages 38-44, St. Paul, MN, USA, June 1987.
ISBN 0-89791-235-7. doi: 10.1145/29650.29654.

David Saff and Michael D. Ernst. Reducing wasted development time via continuous testing. In ISSRE, pages 281-292, Denver,
CO, USA, Nov. 2003. ISBN 0-7695-2007-3

David Saff and Michael D. Emst. An experimental evaluation of continuous testing during development. In ISSTA, pages 76-85,
Boston, MA, USA, July 2004. doi: 10.1145/1007512.1007523.

Anita Sarma, Zahra Noroozi, and André van der Hoek. Palantir: Raisin amon,
workspaces. In ICSE, pages 444-454, Portland, OR, May 2003. ISBN 0-7695-1877-X.

Steve Streeting. Sourcetree. http://www.sourcetreeapp.com, 2010.

Jan Wioka, Barbara Ryder, Frank Tip, and Xiaoxia Ren. Safe-commit analysis to facilitate team software development. In /CSE,
pages 507-517, Vancouver, BC, Canada, May 2009. ISBN 978-1-4244-3453-4. doi: 10.1109/ICSE.2009.5070549.

