Reasoning about programs

Ways to verify your code

• The hard way:
 – Make up some inputs
 – If it doesn’t crash, ship it
 – When it fails in the field, attempt to debug

• The easier way:
 – Reason about possible behavior and desired outcomes
 – Construct simple tests that exercise that behavior

• Another way that can be easy
 – Prove that the system does what you want
 • Rep invariants are preserved
 • Implementation satisfies specification
 – Proof can be formal or informal (we will be informal)
 – Complementary to testing

Reasoning about code

• Determine what facts are true during execution
 – \(x > 0 \)
 – For all nodes \(n \): \(n \text{.next.previous} = n \)
 – Array \(a \) is sorted
 – \(x + y = z \)
 – If \(x \neq \text{null} \), then \(x \text{.a} > x \text{.b} \)

• Applications:
 – Ensure code is correct (via reasoning or testing)
 – Understand why code is incorrect

Forward reasoning

• You know what is true before running the code
 What is true after running the code?

• Given a precondition, what is the postcondition?

• Applications:
 Representation invariant holds before running code
 Does it still hold after running code?

• Example:
 // precondition: \(x \) is even
 \(x = x + 3; \)
 \(y = 2x; \)
 \(x = 5; \)
 // postcondition: ??

Backward reasoning

• You know what you want to be true after running the code
 What must be true beforehand in order to ensure that?

• Given a postcondition, what is the corresponding precondition?

• Applications:
 (Re-)establish rep invariant at method exit: what’s required?
 Reproduce a bug: what must the input have been?

• Example:
 // precondition: ??
 \(x = x + 3; \)
 \(y = 2x; \)
 \(x = 5; \)
 // postcondition: \(y > x \)

• How did you (informally) compute this?

Forward vs. backward reasoning

• Forward reasoning is more intuitive for most people
 – Helps understand what will happen (simulates the code)
 – Introduces facts that may be irrelevant to goal
 • Set of current facts may get large
 – Takes longer to realize that the task is hopeless

• Backward reasoning is usually more helpful
 – Helps you understand what should happen
 – Given a specific goal, indicates how to achieve it
 – Given an error, gives a test case that exposes it
Forward reasoning example

```c
assert x >= 0;
i = x;
// x >= 0 & i = x
z = 0;
// z = 0 & x >= 0 & z = 0
while (i != 0) {
  z = z + 1;
  i = i - 1;
  // x >= 0 & i = x & z = x
}
assert x == z;
```

← What property holds here?
← What property holds here?

Backward reasoning

Technique for backward reasoning:

- Compute the weakest precondition (wp)
- There is a wp rule for each statement in the programming language
- Weakest precondition yields strongest specification for the computation (analogous to function specifications)

Assignment

```c
// precondition: ??
x = e;
// postcondition: Q
Precondition: Q with all (free) occurrences of x replaced by e

Example:
// assert: ??
x = x + 1;
// assert x > 0
Precondition = (x+1) > 0
```

Method calls

```c
// precondition: ??
x = foo();
// postcondition: Q

• If the method has no side effects: just like ordinary assignment
• If it has side effects: an assignment to every variable in modifies
```

Use the method specification to determine the new value

If statements

```c
// precondition: ??
if (b) S1 else S2
// postcondition: Q
Essentially case analysis:
wp("if (b) S1 else S2", Q) =
( b ⇒ wp("S1", Q)
∧ ¬ b ⇒ wp("S2", Q) )
```

If: an example

```c
// precondition: ??
if (x >= 0) {
  x = x + 1;
} else {
  x = x/x;
}
// postcondition: x = 0
Precondition:
wp("if (x>=0) { x = x+1 } else { x = x/x }", x = 0) =
( x = x+1 ⇒ wp("x = x+1", x = 0)
∧ x = x/x ⇒ wp("x = x/x", x = 0) )
= ( x = x+1 ⇒ x = 0 ) & ( x = x/x ⇒ x = 0 )
= true
```

Use the method specification to determine the new value
Reasoning About Loops

- A loop represents an unknown number of paths
 - Case analysis is problematic
 - Recursion presents the same issue
- Cannot enumerate all paths
 - That is what makes testing and reasoning hard

Loop invariants for the example

- So, what is a suitable invariant?
- What makes the loop work?

$LI = x \geq y$

1) $x \geq 0$ & $y = 0 \Rightarrow LI$
2) LI & $x \neq y \Rightarrow (y = y + 1) \land LI$
3) $(LI \land \neg(x \geq y)) \Rightarrow x = y$

Understanding loops by induction

- We just made an inductive argument
 - Inducting over the number of iterations
- Computation induction
 - Show that conjecture holds if zero iterations
 - Assume it holds after n iterations and show it holds after $n+1$
- There are two things to prove:
 - Some property is preserved (known as “partial correctness”)
 - Loop invariant is preserved by each iteration
 - The loop completes (known as “termination”)
 - The “decrementing function” is reduced by each iteration

Loops: values and termination

1) Pre-assertion guarantees that $x \geq y$
2) Every time through loop
 - $x \geq y$ holds and, if body is entered, $x > y$
 - y is incremented by 1
 - x is unchanged
 - Therefore, y is closer to x (but $x \geq y$ still holds)
3) Since there are only a finite number of integers between x and y, y will eventually equal x
4) Execution exits the loop as soon as $x = y$

Is anything missing?

```
// assert x \geq 0 & y = 0
while (x != y) {
    y = y + 1;
} // assert x = y
```

Total Correctness via Well-Ordered Sets

- We have not established that the loop terminates
- Suppose that the loop always reduces some variable’s value.
 - Does the loop terminate if the variable is a
 - Natural number?
 - Integer?
 - Non-negative real number?
 - Boolean?
 - ArrayList?
 - The loop terminates if the variable values are
 - (a subset of) a well-ordered set
 - Ordered set
 - Every non-empty subset has least element

```
// assert x \geq 0 & y = 0
while (x != y) {
    y = y + 1;
} // assert x = y
```

Does the loop terminate?
Decrementing Function

- Decrementing function $D(X)$
 - Maps state (program variables) to some well-ordered set
 - This greatly simplifies reasoning about termination

- Consider: while (b) S
- We seek $D(X)$, where X is the state, such that
 1. An execution of the loop reduces the function’s value:
 $L I \land b \{ S \}$ $D(X_{post}) < D(X_{pre})$
 2. If the function’s value is minimal, the loop terminates:
 $L I \land D(X) = \text{minVal} \Rightarrow \neg b$

Proving Termination

- Is "$x-y$" a good decrementing function?
 1. Does the loop reduce the decrementing function’s value?
 // assert ($y \neq x$);
 let $d_{pre} = (x - y)$; $y = y + 1$;
 // assert ($x_{post} - y_{post}$) < d_{pre}
 2. If the function has minimum value, does the loop exit?
 $(x \geq y \land x - y = 0) \Rightarrow (x = y)$

Choosing Loop Invariant

- For straight-line code, the wp (weakest precondition) function gives us the appropriate property
- For loops, you have to guess:
 - The loop invariant
 - The decrementing function
- Then, use reasoning techniques to prove the goal property
- If the proof doesn’t work:
 - Maybe you chose a bad invariant or decrementing function
 - Choose another and try again
 - Maybe the loop is incorrect
 - Fix the code
- Automatically choosing loop invariants is a research topic

In practice

I don’t routinely write loop invariants

I do write them when I am unsure about a loop and
when I have evidence that a loop is not working
 - Add invariant and decrementing function if missing
 - Write code to check them
 - Understand why the code doesn’t work
 - Reason to ensure that no similar bugs remain

More on Induction

- Induction is a very powerful tool
 \[2^n = 1 + \sum_{i=1}^{n} 2^{i-1} \]

 Proof by induction:

 For $n=1$, $1 + \sum_{i=1}^{1} 2^{i-1} = 1 + 2^0 = 1 + 1 = 2 = 2^1$

Inductive step

Assume $2^n = 1 + \sum_{i=1}^{n} 2^{i-1}$ and show that $2^{n+1} = 1 + \sum_{i=1}^{n+1} 2^{i-1}$

\[2^{n+1} = 1 + \sum_{i=1}^{n+1} 2^{i-1} = 1 + \sum_{i=1}^{n} 2^{i-1} + 2^n = 2^n + 2^n = 2 \times 2^n = 2^{n+1} \]
Is Induction Too Powerful?