
©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 1	

Rapid software development

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 2	

Rapid software development
●  Because of rapidly changing business

environments, businesses have to respond
to new opportunities and competition.

●  This requires software and rapid
development and delivery is not often the
most critical requirement for software
systems.

●  Businesses may be willing to accept lower
quality software if rapid delivery of essential
functionality is possible.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 3	

Requirements

●  Because of the changing environment, it is
often impossible to arrive at a stable,
consistent set of system requirements.

●  Therefore a waterfall model of development
is impractical and an approach to
development based on iterative specification
and delivery is the only way to deliver
software quickly.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 4	

Characteristics of RAD processes

●  The processes of specification, design and
implementation are concurrent. There is no detailed
specification and design documentation is
minimised.

●  The system is developed in a series of increments.
End users evaluate each increment and make
proposals for later increments.

●  System user interfaces are usually developed using
an interactive development system.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 5	

An iterative development process

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 6	

Advantages of incremental development

●  Accelerated delivery of customer services.
Each increment delivers the highest priority
functionality to the customer.

●  User engagement with the system. Users
have to be involved in the development
which means the system is more likely to
meet their requirements and the users are
more committed to the system.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 7	

Problems with incremental development

●  Management problems
•  Progress can be hard to judge and problems hard to find

because there is no documentation to demonstrate what
has been done.

●  Contractual problems
•  The normal contract may include a specification; without a

specification, different forms of contract have to be used.
●  Validation problems

•  Without a specification, what is the system being tested
against?

●  Maintenance problems
•  Continual change tends to corrupt software structure

making it more expensive to change and evolve to meet
new requirements.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 8	

Agile methods

●  Dissatisfaction with the overheads involved in design
methods led to the creation of agile methods. These
methods:
•  Focus on the code rather than the design;
•  Are based on an iterative approach to software

development;
•  Are intended to deliver working software quickly and

evolve this quickly to meet changing requirements.

●  Agile methods are probably best suited to small/
medium-sized business systems or PC products.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 9	

Principles of agile methods

Principle Description

Customer involvement The customer should be closely involved throughout the
development process. Their role is provide and prioritise new
system requirements and to evaluate the iterations of the system.

Incremental delivery The software is developed in increments with the customer
specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognised and
exploited. The team should be left to develop their own ways of
working without prescriptive processes.

Embrace change Expect the system requirements to change and design the system
so that it can accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and in
the development process used. Wherever possible, actively work
to eliminate complexity from the system.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 10	

Problems with agile methods

●  It can be difficult to keep the interest of customers
who are involved in the process.

●  Team members may be unsuited to the intense
involvement that characterises agile methods.

●  Prioritising changes can be difficult where there are
multiple stakeholders.

●  Maintaining simplicity requires extra work.
●  Contracts may be a problem as with other

approaches to iterative development.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 11	

Extreme programming

●  Perhaps the best-known and most widely
used agile method.

●  Extreme Programming (XP) takes an
‘extreme’ approach to iterative development.
•  New versions may be built several times per

day;
•  Increments are delivered to customers every 2

weeks;
•  All tests must be run for every build and the

build is only accepted if tests run successfully.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 12	

The XP release cycle

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 13	

Extreme programming practices

Incremental planning Requirements are recorded on Story Cards and the Stories to be
included in a release are determined by the time available and
their relative priority. The developers break these Stories into
development ‘Tasks’.

Small Releases The minimal useful set of functionality that provides business
value is developed first. Releases of the system are frequent and
incrementally add functionality to the first release.

Simple Design Enough design is carried out to meet the current requirements
and no more.

Test first development An automated unit test framework is used to write tests for a new
piece of functionality before that functionality itself is
implemented.

Refactoring All developers are expected to refactor the code continuously as
soon as possible code improvements are found. This keeps the
code simple and maintainable.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 14	

Extreme programming practices

Pair Programming Developers work in pairs, checking each other’s work and
providing the support to always do a good job.

Collective Ownership The pairs of developers work on all areas of the system, so that
no islands of expertise develop and all the developers own all the
code. Anyone can change anything.

Continuous Integration As soon as work on a task is complete it is integrated into the
whole system. After any such integration, all the unit tests in the
system must pass.

Sustainable pace Large amounts of over-time are not considered acceptable as the
net effect is often to reduce code quality and medium term
productivity

On-site Customer A representative of the end-user of the system (the Customer)
should be available full time for the use of the XP team. In an
extreme programming process, the customer is a member of the
development team and is responsible for bringing system
requirements to the team for implementation.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 15	

XP and agile principles

●  Incremental development is supported through
small, frequent system releases.

●  Customer involvement means full-time customer
engagement with the team.

●  People not process through pair programming,
collective ownership and a process that avoids long
working hours.

●  Change supported through regular system releases.
●  Maintaining simplicity through constant refactoring of

code.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 16	

Requirements scenarios

●  In XP, user requirements are expressed as
scenarios or user stories.

●  These are written on cards and the
development team break them down into
implementation tasks. These tasks are the
basis of schedule and cost estimates.

●  The customer chooses the stories for
inclusion in the next release based on their
priorities and the schedule estimates.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 17	

Story card for document downloading

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 18	

XP and change

●  Conventional wisdom in software
engineering is to design for change. It is
worth spending time and effort anticipating
changes as this reduces costs later in the life
cycle.

●  XP, however, maintains that this is not
worthwhile as changes cannot be reliably
anticipated.

●  Rather, it proposes constant code
improvement (refactoring) to make changes
easier when they have to be implemented.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 19	

Testing in XP

●  Test-first development.
●  Incremental test development from

scenarios.
●  User involvement in test development and

validation.
●  Automated test harnesses are used to run all

component tests each time that a new
release is built.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 20	

Task cards for document downloading

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 21	

Test case description

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 22	

Test-first development

●  Writing tests before code clarifies the
requirements to be implemented.

●  Tests are written as programs rather than
data so that they can be executed
automatically. The test includes a check that
it has executed correctly.

●  All previous and new tests are automatically
run when new functionality is added. Thus
checking that the new functionality has not
introduced errors.

©Ian Sommerville 2004 	
 	
Software Engineering, 7th edition. Chapter 17 Slide 23	

Pair programming

●  In XP, programmers work in pairs, sitting together to
develop code.

●  This helps develop common ownership of code and
spreads knowledge across the team.

●  It serves as an informal review process as each line
of code is looked at by more than 1 person.

●  It encourages refactoring as the whole team can
benefit from this.

●  Measurements suggest that development
productivity with pair programming is similar to that
of two people working independently.

