Finding Your
Way Iin Testing
Jungle

A Learning Approach to Web Security
Testing.

Research Questions

e Why is it important to improve website
security?

e \What techniques are already in place to test
security?

e \What are the benefits of a learning based
web testing approach?

Why is it important to improve web

security?

® Studies show web apps highly vulnerable to
security attacks

o report by WASC lists 97,554 detected vulnerabilities
o 49% of sites contain high-risk vulnerabilities

® Black-box security testing of web apps is a
hard problem

o only able to find 58.5% of high-risk vulnerabilities
and 12.1% of medium risk

® Cross-site scripting (XSS)

o one of top two web vulnerabilities

Learning Approach to Testing

® Fresh approach - cast into learning setting

® Testing algorithm has large database of test
payloads

® If web app’s defenses are broken, one of
these payloads is able to demonstrate the
vulnerabillity

® Question: how do we search through
payloads to find a good candidate?

XSS Analyzer

® Learning algorithm for black-box detection of
XSS vulnerabilities

® 500 million test payloads

® Infers from failed tests which other payloads
are also likely to fail and prunes the search
space

Example - PHP Sanitizer

<?php function filter($str) {
3str = stripslashes(3str);
$str = eregi_replace("<[[:space:1)=([* >]*)[[:space:)]=>* '<\\1>", $str);
$str = eregi_replace("<a[” >)shref([[:space:)]*=[[:space:1)*\"?[[:space:11+([* * >1*)[[:space:]1)=\ *2[* >]=>", '<a hrefe"\\1">", $str);
$str = eregi_replace("<[[:space:])* img[[:space:]]1*([" >)*)[[:space:]]*>", = $str);
$str = eregi_replace("<al” >]=hr~ef[[:spaoe:]]u[[:space:]]*\‘?javascript[[:pmct:]]a\ “C >]=>", 7, $str); Stmp = Y7,
while [ereg("<(/?[[:alpha:]1]*)[[:space:]11x([" >]=*)>" $str Sreg)) {
$1 = strpos(Sstr $regl0)); $1 = strlen(Sreg(0]); $tmp .= substr($str,0,8i); S$str = substr(S$str $i+$l); }
3str = Stmp . $str;
$str = htmlentities(trim(3$str), ENT_QUOTES);
if (Stype !'= "previen™ AND $save != 1) { $str = html_entity_decode($str, ENT_QUOTES); }
return 3$str }
>

Example - PHP Sanitizer

® filter function sanitizes its input string
o deletes all spaces from HTML tags
o deletes img tags

o deletes javascript directives contained in href
attribute values

o deletes all tags with no attributes
® This permits only <a> tags with href values

Example - PHP Sanitizer

® <script>alert("XSS’)</script>

® Fails due to removal of tags with no
attributes

® Problem with filter : user can replace space
character with tab character (\t)

® <input autofocus onfocus="alert(‘XSS’)>
o can penetrate through filter’s defense

How XSS Analyzer works

1. Sends basic payload, <script>alert(1)</
script>

e fails, XSS analyzer learns nothing

2. Sends another:
<input type="text” onfocus="alert ('XSS’)”/>

e fails, but teaches XSS Analyzer a
constraint, filter rejects spaces

3. Sends one with tab character

<lnput autofocus onfocus="alert ('XSS’) ">

e this will demonstrate vulnerability

What techniques are already in place

to test security?

Black Box Security Testing
Brute Force Testing
Random Testing

Expert Testing

Brute-Force Testing

® Accepts as input list of L payloads and
iterates over it trying each payload

® Optimal from coverage standpoint, ensures
0 misses with respect to available payloads

® High cost of HTTP traffic restricts number of
payloads that can be spent on a given input

Random Testing

® Parameterized by list of payloads L and
sample size n

® n payloads sampled at random are tried with
brute-force algorithm

® Advantage: prevents biases such as giving
more weight to payloads in beginning of list

® Disadvantages:
o Interconnections between payloads ignored
o random testing not reproducible in general

Expert Testing

® Rely on expert knowledge when making
short list of payloads

® Works really well for “average case” defects

® Non-standard or uncommon defects, which
are most dangerous, are outside of reach

The Learning Approach

e Using fingerprinting, we test for structural
and bypass attacks

e Fingerprints are defined by a certain word
being used in the attack

e Bypassing attacks
e Structural attacks

What does the XSS Analyzer actually

e Tests to find vulnerabilities in the webpage

e Uses probes to ensure certain attacks are
prevented

e Sees where tests fail, and gathers tokens

e tl;dr its testing the sanitizer for allowing
malicious tokens through

Important Concepts

Test Fails: The sanitizer blocks the payload

Payload: Set of tokens that represents a client
side injection

Token: a word In a script, examples being
‘onmouseover’ or ‘=

Sanitizer: removes words from payload

Structural XSS Analyzer

e \When a test fails, the analyzer parses the
payload to find out what happened

for each token
send to website
iIf token is not accepted
add it to the constraint list

Bypass Strategy

e |n addition to structural constraints, the
analyzer checks bypass strategies

e A bypass strategy is if someone is using a
similar word that could become a word used
In a XSS attack

e These words are added to a mapping, so the
analyzer knows what the word maps back to

Bypass Example

<script>

e Test fails, but now XSS Analyzer knows that
script is a constraint

<SCscriptRIPT>

e Test passes, uncovers a flaw in the filter
which allows the bypass SCscriptRIPT to be
used

This all works together

Create a new set of constraints, structural and bypass
while there are more payloads
traverse tokens
replace bypass tokens with mapping
test if modified payload is blocked by sanitizer
if blocked :
run structural analysis
for each token sanitized, try bypass mapping
if accepted : try next payload

What are the benefits of a learning

based web testing approach?

e Better
e Quicker
e More awesome

Testing Experiment

XSS Analyzer, along with 21 other testing
alternatives were compared with one another

e 15,552 different server side defenses

e defenses contain wide rang of sanitization
and validation strategies

Performance and Coverage

Coverage: measured by the total number of
vulnerabilities detected

Performance: average the number of
requests sent by the testing algorithm in total

Analysis of Results

Two issues addressed: (1) overall value of
each algorithm and (2) viability of random

I t h . Requests (avg.)

a g O r I r Algorithm | Vuln.s | Coverage Total | Success | Failure
brute force | 10356 100% 2301 95 6481
analyzer 10245 99% 10 6 18
AppScan 4406 43% 40 40 40
R100 5659 55% 67 3 106
R200 6311 61% 123 6 209
R250 6591 64% 148 8 260
R300 6725 65% 174 9 311
R400 7021 68% 219 12 411
R500 7291 70% 263 15 511
R600 7338 71% 312 17 613
R700 7567 73% 349 20 710
R800 7620 74% 396 21 811
R900 7725 75% 437 24 910
R1000 7741 75% 481 25 1010
R1500 8046 78% 681 34 1500
R2000 8229 79% 860 42 1983
R2500 8294 80% 1062 51 2472
R3000 8378 81% 1235 56 2953
R3500 8569 83% 1385 66 3421
R4000 8611 83% 1554 72 3896
R4500 8660 84% 1724 77 4371
R5000 8713 84% 1890 88 4845

Overall Value

Measuring the effectiveness of each of the
testing algorithms by computing a normalized
ratio between the total number of detected

vulnerabilities, v, and the total number of
requests r

® Jog(1073*(v/r))

Overall Value

Normalized ratio between findings and sent
requests

15

0.5
0 I I
05 | . I L.

brute analyzerAppScan R100 R250 R500 R1000 R2500 RS000
force

Overall Value

Coverage vs Performance

1 ,’brute force

R5000 analyzer
RZiOO %000
o RS00 R250
4 R
@ 05
) @ AppScan
0
0 0.5 1

Random Testing

The rate at which coverage improves decays
significantly

0.9
0.85 - & & =

0.75 o

0.7 o2
0.65 &

06 =

055 @

0.5
0 1000 2000 3000 4000 5000

e XSS Analyzer is being enhanced
o Glass box
o Address more issues

e Developed by IBM, learn more about it at
their blogspot!

tinyurl.com/xssanalyzer

What are the benefits of a learning based web
testing approach?

Why is R100 considered to be wasteful?

How does the XSS Analyzer complement the
sanitizer?

How could the learning technique be applied
to non-web based programs?

How may this approach be data heavy?

Why is black-box security testing generally a
hard problem?

