Performance Debugging
Coming up

• Homework 2 was due today
• Group self-selection was due today
 – any problems?

• Paper presentations will start Oct 21
 – email coming shortly with assignments
Coming up

• This Wednesday 10/9, **NO CLASS**
 – instead, lecture on data use in systems on
 Thursday, Oct 10, 4PM, CS 151
 snacks again at 3:30PM

• Next Monday 10/14, **NO SCHOOL** (Columbus day)

• Tuesday 10/15 and Wednesday 10/16
 – design exercise in groups and with **prizes**!
Questions?
Performance Debugging
Why consider performance?

• We have mostly looked at:
 – functionality
 – correctness

• There are lots of ideas and tools on debugging input / output behavior, even automatically
 – for example, you’ll see GenProg on homework 4

• But performance is important too!

 why?
Performance is important

• For some applications, without performance, correctness doesn’t matter:
• Sorting correctly but slowly doesn’t matter if you are trying to sort 10 trillion Google search results
 – better to sort mostly-right, but quickly!
• A plane landing gear controlled by a precise but inefficient machine learning model?
• Reliably storing movies on DVDs (handling scratches) but taking 10X space?
Let’s consider some ideas

• Profiling individual executions

• Profiling sets of executions

• Finding performance bugs

• …then we’ll list some open problems
gprof: Execution profiling

- Run the program (so dynamic analysis)
- Record how much time is spent in each function

- Output looks like:
 function foo(): 60%
 function bar(): 30%
 function baz(): 10%
What are some issues?

• You know which function takes the most time
• But what don’t you know?
 – from where was the function called?
 – did parameters play a role?
 – how many times was the function called? (recursive?)
• Different calls have different times
• What else?
 – instrumentation should be fast!
Example

• Consider a sorting function:
 \texttt{sort(List l, Comparator \; c)}

• The size of \texttt{l} matters

• Does \texttt{c} matter?
 Yes! Some comparators may be fast, others slow. A performance bug in \texttt{c} can show up as a performance bug in \texttt{sort}
But let’s start simple

• Assume:
 – All calls to a function are created equal
 • OK first approximation of the truth
 • But we’ll need more precision later
 – If \(f \) calls \(g \), and \(g \) calls \(f \), let’s consider them identical
 • removes cycles from the call graph
 • simplifies some analysis
 • again, an approximation
What to collect during executions?

Two kinds of data:

• Execution frequency of each function
 – Set random timer interrupts
 – On interrupt, record current function
 – Collect a vector of counters, C_{foo}, C_{bar}, ...
 one per function

• Who calls whom
 – On function call, record caller and callee
 – Increment $count_{\text{caller, callee}}$ in a hash table
Self-time: S_{foo}

• Estimate the percent of time in foo
 – C_{foo}: number samples of foo
 – ΣC: total number of samples

• So total time spent in the body of is foo: $S_{\text{foo}} = \frac{(\text{total time}) \times C_{\text{foo}}}{\Sigma C}$

 note: does not include functions called by foo
Total time: T_{foo}

Total time spent in foo is:

$$T_{\text{foo}} = S_{\text{foo}} + \sum (\text{count}_{\text{foo}, g} T_g)$$

(formula doesn’t work with recursion and if different calls to the same function take different time)
Example report

The report includes:

– self-time
– time for each site the function is called
– time for each call site in the function
gprof Summary

• C profiler
• Free part of GNU

Strengths:
• Attributes time to individual program components
• Estimates based on a single execution (debuggable)
• Standard approach to performance profiling

Weaknesses
• Assumes uniform time for calls, no recursive functions
• Measurement effects distort time of small functions
 – some distortion can be substantial

http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html
Rule #1 of performance optimization

- Don’t do it until your code works
- Profile first, then optimize

- Why?

Because you can spend a lot of time optimizing performance of a piece that doesn’t matter. Learn what the bottleneck is first!
Typical gprof usage

• Run gprof
• Optimize worst offenders
• Repeat until the profile is flat
 – Time spread out about evenly among most functions
 – Sometimes some functions carry the load of the computation and should remain “uneven”

• Now what?
Consider another gprof weakness

• If a run has no performance problem, the profile looks fine.

• Dynamic analysis of one run can’t find problems that don’t happen in that one run!

• What can we learn from multiple executions?
Trend profiling

- We can learn something about asymptotic behavior!

Idea:
- Run the program
- Plot execution time vs. input size
- Fit a curve to the data
- The empirical computational complexity
Example
Some observations

• Fits will be approximate
 – There is noise in the data
 – We must have a notion of “good fit”

• Fit depends heavily on
 – Notion of time
 – Notion of input size

• Not obvious how to fit curves
 – What kinds of curves should we consider?
Time

Using machine time is problematic

• Consider two commands:

> time foo input

 output: 5 seconds

> time foo input

 output: 6 seconds

What might have happened?
We need a repeatable notion of time

• One idea
 – count basic block executions

• Keep a vector of counters
 – One per basic block
 – Count how many times the basic block executes

• Advantages
 – Independent of low-level variations in time
 – Repeatable
 – Instrumentation does not perturb measurements
Input size

• One idea
 – Byte count of program input

• Disadvantages
 – Doesn’t account for structure in the input

Example:
 • A routine that scans the input looking for “foo”
 • Each time it encounters “foo”, it computes the next 1,000,000 digits of π
 • Cost depends much more on number of foos than total size of input

• Advantages
 – Simple
 – Universal
 – Byte count is often correlated with cost
Garbage in, garbage out principle

- We’ll use **basic blocks** for time and **bytes** for inputs size

...but if these measures are not reasonable for an application, the fitted curve will be poor and will mean nothing
Last question: Which curves?

• It’s not obvious what family of curves to fit
• Many programs have complex performance
 – Different pieces have different time complexity
 – Even the asymptotic behavior of one component may be hard to describe

• Our goal is:
 – Simple descriptions
 – Focus on high order term
We can use the power of the power law

• Convert our space to the log-log space:
 – time: consider log of # of basic blocks
 – input size: consider log of input bytes

• Why do this?
 – Performance of n^k becomes $k \log n$
 – Becomes a line in log-log scale
 – Just fitting straight lines can reveal dominating terms
Properties of power law profiling

• Low-dimensional
 – Requires estimating only two parameters: slope and intercept
 – Higher-dimensional models are prone to over fitting

• Minimizes relative error
 – Tolerates larger errors in larger inputs

• Focuses attention on the high-order term
Example: Selection sort

0.45n^{2.02}

mean relative error of .4%
Deviations from the power law?

• Since we have counts for each basic block, we can: Compute a power law for each block.

• This allows us to see differences between overall trends and the trends for particular basic blocks.
Finding the performance bugs

<table>
<thead>
<tr>
<th>Source File</th>
<th>Line</th>
<th>Model</th>
<th>R^2</th>
<th>MRE</th>
<th>Prediction at $n = 10^7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST.c</td>
<td>34</td>
<td>$0.028 n^{1.71}$</td>
<td>0.94</td>
<td>5.4%</td>
<td>132×10^{10}</td>
</tr>
<tr>
<td>hashset.c</td>
<td>119</td>
<td>$0.000021 n^{1.95}$</td>
<td>0.83</td>
<td>25%</td>
<td>8.28×10^{10}</td>
</tr>
<tr>
<td>hash.c</td>
<td>299</td>
<td>$0.0084 n^{1.58}$</td>
<td>0.96</td>
<td>4.9%</td>
<td>3.88×10^{10}</td>
</tr>
<tr>
<td>env.c</td>
<td>54</td>
<td>$7.8 n^{1.18}$</td>
<td>0.99</td>
<td>1.8%</td>
<td>2.12×10^{10}</td>
</tr>
<tr>
<td>hashset.c</td>
<td>98</td>
<td>$0.000098 n^{1.79}$</td>
<td>0.84</td>
<td>17%</td>
<td>1.94×10^{10}</td>
</tr>
<tr>
<td>jcollection.c</td>
<td>265</td>
<td>$0.000018 n^{1.86}$</td>
<td>0.85</td>
<td>24%</td>
<td>1.33×10^{10}</td>
</tr>
<tr>
<td>hash.c</td>
<td>301</td>
<td>$0.0029 n^{1.58}$</td>
<td>0.96</td>
<td>5.3%</td>
<td>1.31×10^{10}</td>
</tr>
</tbody>
</table>
node last_node(node n) {
 if (n) return NULL;
 while (n->next) n = n->next;
 return n;
}

What’s wrong here?

List needs a tail pointer to guarantee constant time access.
Another idea

• In 311 / 611 (Algorithms), we always study worst-case complexity bounds.
• Here, we characterize complexity in practice
 – May be better than worst-case bound
 – May be more relevant than worst-case bound

But, conclusions only apply to workloads drawn from the same distribution!
Andersen’s algorithm

- Theoretical complexity: $O(n^3)$
- Empirical complexity: $O(n^{1.98})$
GLR C++ parser

- Theoretical complexity: \(O(n^3) \)
- Empirical complexity: \(O(n^{1.13}) \)
Pros of trend profiling

• Trend profiling can find performance bugs that haven’t manifested in test data
 – by comparing discrepancies between trends for basic blocks with overall program trend

• Trends are relatively simple to compute
Down sides

Trend profiling can find lots of other “interesting” things

• Trends in data

• Useless optimizations
 – For example, identify code as problematic that executes less often for larger inputs
Unsolved problems

• Performance profiling is not parallelizable today, but could be... maybe

• Important problems in understanding performance in
 – parallel/distributed settings
 – memory hierarchies
Reminder

• No class Wednesday
• Yes lecture on Thursday, 4 PM, CS 151

• Monday 10/14 is a holiday
• but class on Tuesday 10/15, regular time