Performance Debugging

11/27/12

Coming up

* Homework 2 grades are up
— average is 93: good job!

* Homework 3 is due
Thursday, Nov 29, 9 AM EST

Final project reports due:

Friday, Dec 7, 11:59 PM EST

* Final project presentations:

Tuesday Dec 4 and Thursday Dec 6, in class

Next class (Nov 29)

Bring a laptop if you have one

We'll try out a

software engineering reality game

— Run a software development team

— Avoid pitfalls that cause delays

— Evaluate different development lifecycle models

It will be fun
And we’ll do class evaluations

Performance Debugging

Why consider performance?

* We have mostly looked at:
— functionality
— correctness

* There are lots of ideas and tools on debuging
input / output behavior, even automatically
— for example, genprog from homework 3

* But performance is important too!

why?




Performance is important

* For some applications, without performance,
correctness doesn’t matter:

* Sorting correctly but slowly doesn’t matter if
you are trying to sort 10 trillion Google search
results
— better to sort mostly-right, but quickly!

* Aplane landing gear controlled by a precise
but inefficient machine learning model?

* Reliably storing movies on DVDs (handling
scratches) but taking 10X space?

11/27/12

Let’s consider some ideas

* Profiling individual executions
* Profiling sets of executions
* Finding performance bugs

* ..then we’ll list some open problems

gprof: Execution profiling

¢ Run the program (so dynamic analysis)

* Record how much time is spent in each
function

¢ Output looks like:
function foo(): 60%
function bar(): 30%
function baz(): 10%

What are some issues?

* You know which function takes the most time
* But what don’t you know?
— from where was the function called?
— did parameters play a role?
— how many times was the function called? (recursive?)
* Different calls have different times
* What else?

— instrumentation should be fast!

Example

* Consider a sorting function:

sort (List 1, Comparator c)
* The size of 1 matters
* Does c matter?

Yes! Some comparators may be fast, others slow.
A performance bug in c can show up as a
perfomance bugin sort

But let’s start simple

* Assume:

— All calls to a function are created equal
* OK first approximation of the truth
* But we’ll need more precision later

—If £ calls g, and g calls £, let’s consider them

identical

* removes cycles from the call graph
« simplifies some analysis
* again, an approximation




What to collect during executions?

Two kinds of data:

* Execution frequency of each function
— Set random timer interrupts
— On interrupt, record current function

— Collect a vector of counters, Cfoo, Cbar, ...
one per function

* Who calls whom
— On function call, record caller and callee
— Increment count e, calee IN @ hash table

11/27/12

Self-time: Sfoo

* Estimate the percent of time in foo
— Cfoo: number samples of foo

-3C: total number of samples
* So total time spent in the body of is foo:

Total time: Tfoo

Total time spent in foo is:
Tfoo=Sfoo +count.,, ;Tg

(formula doesn’t work with recursion and if different calls to the
same function take different time)

Sfoo=  (total time) * Cfoo
2C
does not include functions called by foo
Example report
called/total parents
index Ztime self descendants called+self name indeéx
_called/total _ children
0.20 1.20 " 4/10 CALLER1 7
0.30 1.80 8/10 CALLER2 1
(2] 41.5 0.50 3.00 10+4 EXAMPLE 2
1.50 1.00 20/40 SUB1 <cyclel> [4
0.00 0.50 1/5 SUBZ 9
0.00 0.00 0/5 SUB3 1

The report includes:
— self-time
— time for each site the function is called
— time for each call site in the function

gprof Summary

e Cprofiler

* Free part of GNU

Strengths:

« Attributes time to individual program components
* Estimates based on a single execution (debuggable)
* Standard approach to performance profiling

Weaknesses
* Assumes uniform time for calls, no recursive functions

* Measurement effects distort time of small functions
— some distortion can be substantial

http://www.cs.utah.edu/dept/old/texinfo/as/gprof toc.html

Rule #1 of performance optimization

* Don’t do it until your code works
* Profile first, then optimize

* Why?

Because you can spend a lot of time optimizing
performance of a piece that doesn’t matter.
Learn what the bottleneck is first!




Typical gprof usage

Run gprof
* Optimize worst offenders

* Repeat until the profile is flat

— Time spread out about evenly among most
functions

— Sometimes some functions carry the load of the
computation and should remain “uneven”

* Now what?

11/27/12

Consider another gprof weakness

* If a run has no performance problem, the
profile looks fine.

* Dynamic analysis of one run can’t find
problems that don’t happen in that one run!

* What can we learn from multiple executions?

Trend profiling

* We can learn something about asymptotic
behavior!

Idea:

Run the program
Plot execution time vs. input size
Fit a curve to the data

The empirical computational complexity

Example

time

input size

Some observations

Fits will be approximate
— There is noise in the data
— We must have a notion of “good fit”

* Fit depends heavily on
— Notion of time
— Notion of input size

* Not obvious how to fit curves
— What kinds of curves should we consider?

Time

Using machine time is problematic
* Consider two commands:
> time foo input
output: 5 seconds
> time foo input
output: 6 seconds

What might have happened?




We need a repeatable notion of time

* Oneidea
— count basic block executions

* Keep a vector of counters
— One per basic block

— Count how many times the basic block executes
* Advantages

— Independent of low-level variations in time
— Repeatable

— Instrumentation does not perturb measurements

11/27/12

Input size

* Oneidea
— Byte count of program input

* Disadvantages
— Doesn’t account for structure in the input
Example:

* Aroutine that scans the input looking for “foo”

* Cost depends much more on number of Foo’s than total size of input
¢ Advantages
— Simple
— Universal
— Byte count is often correlated with cost

* Each time it encounters “foo”, it computes the next 1,000,000 digits of 1t

Garbage in, garbage out principle
* We’'ll use basic blocks for time and
bytes for inputs size

...but if these measures are not reasonable for

an application, the fitted curve will be poor and
will mean nothing

time

input size

Last question: Which curves?

* It's not obvious what family of curves to fit
* Many programs have complex performance
— Different pieces have different time complexity

— Even the asymptotic behavior of one component
may be hard to describe

* Our goal is:
— Simple descriptions
— Focus on high order term

We can use the power of
the power law
* Convert our space to the log-log space:

— time: consider log of # of basic blocks
— input size: consider log of input bytes

* Why do this?
— Performance of n* becomes k log n
— Becomes a line in log-log scale

— Just fitting straight lines can reveal dominating terms

Properties of power law profiling

Low-dimensional

— Requires estimating only two parameters:
slope and intercept

— Higher-dimensional models are prone to over
fitting
* Minimizes relative error
— Tolerates larger errors in larger inputs
Focuses attention on the high-order term




Example: Selection sort

11/27/12

Deviations from the power law?

* Since we have counts for each basic block, we can:

Compute a power law for each block.

* This allows us to see differences between overall
trends and the trends for particular basic blocks

18407 T TR

1e+06 - ,‘/'”' 3

100000 - o e

10000 |- = =

1000 £ Sl i _ -

E 4 observations &

100 & et best poyy rlaw fit -]

E & L 3\1‘(.\-— 1) 3

1 10 fo0 To00 f6000
0.45n202
mean relative error of .4%
Finding the performance bugs

Source File  Line Model R’ MRE Prediction
N atn =107
AST.c 34 0.0287771) 0.94 54% 132 x 1010
hashset.c 119  0Uoess+r® 083 25%  8.28x 101
hash.c 299 0.0084 1'% 096 49% 3.88x 10
env.c 54 7.8n"1% 099 18% 2.12x10!
hashset.c 98 0.000098 7'7°  0.84 17%  1.94x 10'°
jeollection.c 265 0.000018 2'%6  0.85 24%  1.33x 10'°
hash.c 301 00029718 096 53% 1.31x10%°

AST.c, line 34

node last node(node n) {
if (n)
while

return null;

(n->next) n = n->next;

return n;

What’s wrong here?

List needs a tail pointer to guarantee
constant time access.

Another idea

* In311/ 611 (Algorithms), we always study
worst-case complexity bounds.

* Here, we characterize complexity in practice
— May be better than worst-case bound

— May be more relevant than worst-case bound

But, conclusions only apply to workloads drawn
from the same distribution!

Andersen’s algorithm

C &

* Theoretical complexity: O(n3)

* Empirical complexity: ~ O(n8)




11/27/12

GLR C++ parser

1e+09

1e+08

1e+07

1e+06

100000

10000

power lau fit
Foe observations  +

Aty
#

;{i o
F e

1000
1 10 100 1000 10000 100000 le+06

* Theoretical complexity: 0O(n3)
* Empirical complexity: O(n113)

Pros of trend profiling

* Trend profiling can find performance bugs
that haven’t manifested in test data

— by comparing discrepancies between trends for
basic blocks with overall program trend

* Trends are relatively simple to compute

Down sides

Trend profiling can find |OtS of other
“interesting” things

* Trends in data

* Useless optimizations

— For example, identify code as problematic that
executes less often for larger inputs

Unsolved problems

* Performance profiling is not parallelizable
today, but could be... maybe

* Important problems in understanding
performance in
— parallel/distributed settings
— memory hierarchies




