11/8/12

Reminders

* Respond to the project plan teamwork

assessment on Moodle.

— You won’t get your project plan grades until
everyone on your team responds.

* Tests

— Grades will be posted this weekend.
— Solutions will be on Moodle this weekend.
— I'll hand the tests back Nov 20.

Any comments? Length? Difficulty?

More reminders

* Next week, | am traveling
— Next Tuesday, Nov 13: no lecture
Use time to work on project
— Next Thursday, Nov 15: guest lecture

* For the homework (due 11/15), Wenzhe is
available during office hours: Monday 2PM-—
3PMin CS 316

* | am available via email

Project status report

Due Nov 17 on Moodle

1 per team

Submit a 1-2 paragraph summary of your
team’s progress.

Tell me what’s done and if you are stuck on
anything

The goal is for me to help out, not to grade you

Today’s plan

* Teamwork

* Debugging (especially in teams)

Working in Teams

TEAMWORK

Large ambitious goals usually require that people work together.

* Why is teamwork hard?
* Not getting into each other’s way

» Positive teamwork

Team pros and cons

* Benefits
— Attack bigger problems in a short period of time
— Utilize the collective experience of everyone

* Risks
— Communication and coordination issues
— Groupthink: diffusion of responsibility; going along
— Working by inertia; not planning ahead
— Conflict or mistrust between team members

11/8/12

Communication: powerful but costly!

* Communication requirements increase with
increasing numbers of people

* Everybody to everybody: quadratic cost

* Every attempt to communicate is a chance to
miscommunicate

* But not communicating will guarantee
miscommunication

What about conflicts?

| What can cause conflicts? |

* Two people want to work on the same file
— Google docs lets you do that

But...

* What about same line?

* What about timing?

* What about design decisions?

Version control

Version control aims to allow
multiple people to work in
parallel.

Centralized version control

¢ (old model)

¢ Examples: Concurrent Versions System (CVS)
Subversion (SVN)

Alice’s Yuriy’s
checkout ‘ desktop

checkg
Bob’s
checkout 0
Eve’s
checkout

Yuriy’s
laptop
checkg

Problems with centralized VC

* What if | don’t have a network connection?
* What if am implementing a big change?

* What if | want to explore project history later?

11/8/12

Distributed version control

¢ (new model)

¢ Examples: Mercurial (Hg), Git, Bazaar, Darcs, ...

* Local operations are fast (and possible)
* History is more accurate
¢ Merging algorithms are far better

Alice’s Repository
checkout

Distributed version control model

Master Repository

Alice’s Repository Y“;‘Z;OS;ZEEOP

Bob’s Repository VRS Lesidep

Yuriy’s
desktop
Eve’s Repository checkg

Yuriy’s

laptop

checkg

Bob’s
checkout
Eve’s
checkout

History view (log)

master
Melinda Q

* Bill and Melinda work at the
same time

¢ At the end, all repositories have
the same, rich history

s4gmizsaznisqzg

Bill

What VC does the cloud provide?

code.google.com has SVN and Hg
bitbucket.org has Hg

github.com has git
sourceforge.net has SVN, CVS, git, Hg, Bazaar

You can run whatever you want of UW servers

Team structures

* Tricky balance among
— progress on the project/product
— expertise and knowledge
— communication needs

“A team is a set of people with complementary
skills who are committed to a common
purpose, performance goals, and approach for
which they hold themselves mutually
accountable.”

— Katzenbach and Smith

Common SW team responsibilities

Project management

Functional management

Developers: programmers, testers, integrators
Lead developer/architect (“tech lead”)

These could be all different team members, or
some members could span multiple roles.

Key: Identify and stress roles and responsibilities

Issues affecting team success

* Presence of a shared mission and goals
* Motivation and commitment of team members

* Experience level
— and presence of experienced members

e Team size
— and the need for bounded yet sufficient communication

¢ Team organization
— and results-driven structure

* Reward structure within the team
— incentives, enjoyment, empowerment (ownership, autonomy)

11/8/12

Team structure models

* Dominion model
— Pros
« clear chain of responsibility
* people are used to it
— Cons:
« single point of failure at the commander
« less or no sense of ownership by everyone

* Communion model
— Pros
* acommunity of leaders, each in his/her own domain
* inherent sense of ownership
— Cons
* people aren't used to it (and this scares them)

Team leadership

Who makes the important product-wide
decisions in your team?

— One person?

— All, by unanimous consent?

— Other options?...

— Is this an unspoken or an explicit agreement
among team members?

Surgical/Chief Programmer Team
[Baker, Mills, Brooks]

Chief: all key decisions]

Copilot: chief’s assistant]

Administrator: manages people, hardware, resources]

Editor: edits chief's documentation

Secretaries (2): for administrator and for editor

Program clerk: keeps all project records

Toolsmith: builds programming tools for chief

Tester: develops and runs unit and system tests

Language lawyer: programming language expert, advises chief

Microsoft’s team structure

[microsoft.com]

* Program Manager. Leads the technical side of a
product development team, managing and
defining the functional specifications and defining
how the product will work.

* Software Design Engineer. Codes and designs
new software, often collaborating as a member
of a software development team to create and
build products.

* Software Test Engineer. Tests and critiques
software to assure quality and identify potential
improvement opportunities and projects.

Toshiba Software Factory v. vatsumoto]

¢ Late 1970’s structure for 2,300 software
developers producing real-time industrial
application software systems (such as traffic
control, factory automation, etc.)

* Unit Workload Order Sheets (UWOS) precisely

define a software component to be built

Assigned by project management to developers

based on scope/size/skills needed

Completed UWOS fed back into management

system

* Highly measured to allow for process improvement

Common factors in good teams

Clear roles and responsibilities
— Each person knows and is accountable for their work

Monitor individual performance
— Who is doing what, are we getting the work done?

Effective communication system
— Available, credible, tracking of issues, decisions
— Problems aren't allowed to fester ("boiled frogs")

Fact based decisions
— Focus on the facts, not the politics, personalities, ...

11/8/12

Motivation

What motivates you?

_ Achievement Company policies

. = Work itself
— Recognition .
= Work conditions
— Advancement)
= Personal life
— Salary

Job security
Responsibility
Competition
Time pressure

— Possibility for growth
— Interpersonal relationships
* Subordinate

* Superior = Tangible goals
* Peer = Social responsibility
— Status

Other?
— Technical supervision
opportunities

De-motivators

What takes away your motivation?
— Micro-management or no management
— Lack of ownership
— Lack of effective reward structure
* Including lack of simple appreciation for job well done
— Excessive pressure and resulting "burnout"
— Allowing "broken windows" to persist
— Lack of focus in the overall direction
— Productivity barriers
« Asking too much; not allowing sufficient learning time; using the wrong tools
— Too little challenge
— Work not aligned with personal interests and goals
— Poor communication inside the team

Today’s plan

* Teamwork

- Debugging (especially in teams)

Ways to get your code right

Validation

— Purpose is to uncover problems and increase confidence
— Combination of reasoning and test

Debugging

— Finding out why a program is not functioning as intended
Defensive programming

— Programming with validation and debugging in mind
Testing # debugging

— test: reveals existence of problem

— debug: pinpoint location + cause of problem

A bug — September9 1947

74 US Navy Admiral Grace Murray Hopper, working on Mark | at Harvard

94
0§ | Oadkam shadch é/.l,,, ARG)
/000 . sw‘?} e 9.087 ¥YC 295 ok
130c o) me -me EVSTERL 6 74/5 525055
039 PRO.> 2. 130976y
ook s :sosynm

% er 033 fodd gyt ww

Am . e

: ey
e Shartd CF.'M’ %R{"l(s.‘“ I)

@e\w*ﬁb ZH e | iF

Um:TQm r\\uu\

preis JJZD“DU caseoof bug Lg.'m’ {NML.
100 cLerd Jpm

1

A Bug’s Life

* Defect — mistake committed by a human

* Error —incorrect computation

* Failure — visible error: program violates its
specification

* Debugging starts when a failure is observed
— Unit testing
— Integration testing
— In the field

11/8/12

Defense in depth

1. Make errors impossible
— Java makes memory overwrite bugs impossible
2. Don’tintroduce defects
— Correctness: get things right the first time
3. Make errors immediately visible
— Local visibility of errors: best to fail immediately
— Example: checkRep() routine to check representation invariants
4. Last resort is debugging
— Needed when effect of bug is distant from cause
— Design experiments to gain information about bug
« Fairly easy in a program with good modularity, representation hiding,
specs, unit tests etc.
* Much harder and more painstaking with a poor design, e.g., with rampant
rep exposure

First defense: Impossible by design

* In the language

— Java makes memory overwrite bugs impossible

* In the protocols/libraries/modules
— TCP/IP will guarantee that data is not reordered
— Biglnteger will guarantee that there will be no overflow

* In self-imposed conventions
— Hierarchical locking makes deadlock bugs impossible

— Banning the use of recursion will make infinite recursion/insufficient
stack bugs go away

— Immutable data structures will guarantee behavioral equality
— Caution: You must maintain the discipline

Second defense: correctness

* Get things right the first time
— Don’t code before you think! Think before you code.
— If you're making lots of easy-to-find bugs, you're also making
hard-to-find bugs — don't use compiler as crutch
* Especially true, when debugging is going to be hard
— Concurrency
— Difficult test and instrument environments
— Program must meet timing deadlines
« Simplicity is key
— Modularity
+ Divide program into chunks that are easy to understand
* Use abstract data types with well-defined interfaces
* Use defensive programming; avoid rep exposure
— Specification

* Write specs for all modules, so that an explicit, well-defined contract
exists between each module and its clients

Third defense: immediate visibility

If we can't prevent bugs, we can try to localize them to
a small part of the program

— Assertions: catch bugs early, before failure has a chance to
contaminate (and be obscured by) further computation

— Unit testing: when you test a module in isolation, you can
be confident that any bug you find is in that unit (unless
it's in the test driver)

— Regression testing: run tests as often as possible when
changing code. If there is a failure, chances are there's a
mistake in the code you just changed

* When localized to a single method or small module,
bugs can be found simply by studying the program text

Benefits of immediate visibility

* Key difficulty of debugging is to find the code fragment
responsible for an observed problem

— A method may return an erroneous result, but be itself
error free, if there is prior corruption of representation

¢ The earlier a problem is observed, the easier it is to fix

— For example, frequently checking the rep invariant helps
the above problem

¢ General approach: fail-fast
— Check invariants, don't just assume them
— Don't try to recover from bugs — this just obscures them

How to debug a compile

* Multiple passes
— Each operate on a complex IR

Intermediate
Representation

— Lot of information passing

— Very complex Rep Invariant

— Code generation at the end
* Bug types:

— Compiler crashes

— Generated program is buggy

11/8/12

Don't hide bugs

// k is guaranteed to be present in a
inti=0;
while (true) {

if (a[i]==k) break;

i+

}

* This code fragment searches an array a for a value k.
— Value is guaranteed to be in the array.

— If that guarantee is broken (by a bug), the code throws an
exception and dies.

¢ Temptation: make code more “robust” by not failing

Don't hide bugs

// k is guaranteed to be present in a
inti=0;
while (ia.length) {

if (a[i]==k) break;

I++;

}

* Now at least the loop will always terminate
— But no longer guaranteed that a[i]==k
— If rest of code relies on this, then problems arise later

— All we've done is obscure the link between the bug's
origin and the eventual erroneous behavior it causes.

Don't hide bugs

// k is guaranteed to be present in a
inti=0;
while (i<a.length) {

if (a[i]==k) break;

i++;
}
assert (i<a.length) : "key not found";

* Assertions let us document and check
invariants

Abort program as soon as problem is detected

Inserting Checks

* Insert checks galore with an intelligent
checking strategy
— Precondition checks
— Consistency checks
— Bug-specific checks

* Goal: stop the program as close to bug as
possible

Use debugger to see where you are, explore
program a bit

Checking For Preconditions

// k is guaranteed to be present ina
inti=0;
while (i<a.length) {
if (a[il==k) break;

++

.

}

assert (i<a.length) : "key not found";

Precondition violated? Get an assertion!

Downside of Assertions

static int sum(Integer a[], List<Integer> index) {
ints=0;
for (e:index) {
assert(e < a.length, "Precondition violated");
s=s+alel]

return s;
}
Assertion not checked until we use the data
Fault occurs when bad index inserted into list

May be a long distance between fault activation and error detection

11/8/12

checkRep: Data Structure Consistency Checks

static void checkRep(Integer a[], List<Integer> index) {
for (e:index) {

assert(e < a.length, "Inconsistent Data Structure");
}
}
. Perform check after all updates to minimize
distance between bug occurrence and bug
detection

. Can also write a single procedure to check
ALL data structures, then scatter calls to this
procedure throughout code

Bug-Specific Checks

static void check(Integer a[], List<Integer> index) {
for (eiindex) {
assert(e = 1234, “"Inconsistent Data Structure");

}
}

Bug shows up as 1234 in list
Check for that specific condition

Checks In Production Code

* Should you include assertions and checks in production code?
— Yes: stop program if check fails — don’t want to
take chance program will do something wrong
— No: may need program to keep going, maybe bug
does not have such bad consequences
— Correct answer depends on context!

Ariane 5 — program halted because of overflow in unused value,
exception thrown but not handled until top level, rocket crashes...

Teamwork & debugging summary

* Work on the part of the project that excites
you

* Make sure all necessary jobs are covered

* Do your best to
— prevent errors in design
— think hard before you write code
— code to make bugs visible fast

