
Software Security — Ben Ransford — CS621 Fall 2012

Notes from Prof. Brun

• Project plan due next Tuesday (email him 
if you have questions)

• Be ready to present project plans on 
Tuesday (10 minutes per group)
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≈

Ross Anderson,
Security Engineering

Saltzer & Kaashoek,
P. of C. S. D.
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“Security engineering is about building 
systems to remain dependable in the face 

of malice, error, or mischance.”
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Security =
Policy + Mechanism + Assurance + Incentive
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Security =
Policy + Mechanism + Assurance + Incentive

Insecurity ≈
How can I break this system?
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Threat Modeling
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• ... is your job in system design

• Think like an attacker

• Understand and prioritize incentives

• Imagine a realistic attacker
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Attack Surface

• Which parts of your system interface with 
other stuff?

• Network ports, I/O

• Command-line inputs

• Dependencies on other systems
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Attacker Incentives

• For each element of attack surface:

• What can a successful attacker gain?

• What’s it worth?
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(Some) Kinds of Attackers

Value Example Attacker

Low Generic PC Script kiddie

Medium Personal bank 
account Phisher

High State nuclear 
program Another state
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Script Kiddies
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• Largely unskilled; main resource = time

• Use pre-packaged exploits

• May wish to sell compromised resources 
(e.g., sell zombie PCs to botnet)
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Midrange “Hackers”

• Somewhat skilled; may have specific 
targets

• May be willing to use social engineering

• Motivations include fame, revenge, 
vandalism, $$$
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High-End Hackers

• Deep understanding of target

• Write exploits

• These days, sell exploits for $$$$$
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High-End Hackers

• Deep understanding of target
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• These days, sell exploits for $$$$$
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Even Higher-End Hackers
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• E.g., state agencies (NSA, Mossad)

• Specific targets for espionage or sabotage

• Advanced persistent threats — get into 
target and stay there
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Cryptography
Do’s & don’ts

Note: cryptography != security
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Rule #1
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Don’t design your own cipher!
Use an existing one.

== Use AES.
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Don’t pull a Mifare
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Rule #2
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Don’t rely on security through obscurity.
Your system’s design will become known.

== Assume only the keys are secret.

X
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Rule #3
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Don’t use randomness incorrectly or use 
predictable “randomess.”

Bad randomness makes attacks easy.

== Use TRNG or a good seeded PRNG
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Good PRNG

• Doesn’t repeat itself (long period)

• Does use sources of “random” bits
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Good PRNG

• Doesn’t repeat itself (long period)

• Does use sources of “random” bits
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Bad PRNG

Easy to guess secrets!
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Bad PRNG

Easy to guess secrets!
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Note: Multiple PRNGs
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(demo of Linux /dev/urandom vs. /dev/random)

Don’t use urandom when you want random.
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Harping on Randomness
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Harping on Randomness
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“We found that 5.57% of TLS hosts and 9.60% of SSH 
hosts share public keys in an apparently vulnerable 

manner, due to either insufficient randomness during key 
generation or device default keys” (source: factorable.net)
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Debian OpenSSL disaster
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(Don’t trust your tools blindly!)
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Greatest Hits
(and how not to get hit)
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please put on your C/C++ hats



Software Security — Ben Ransford — CS621 Fall 2012

Buffer overflows
(super common)
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strcpy(dest, user_supplied_input);
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Use-after-free
(somewhat common)
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void f (p_t *p) { ...; free(p); }

f(my_pointer);
*my_pointer = 0x1234;
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Double free
(not all that common)
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void f (p_t *p) { ...; free(p); }

f(my_pointer);
free(my_pointer);
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Input validation
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Cross-site scripting
(super super super common)
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Hello my name is <script>stealStuff();</script>


