
Software Security — Ben Ransford — CS621 Fall 2012

Notes from Prof. Brun

• Project plan due next Tuesday (email him 
if you have questions)

• Be ready to present project plans on 
Tuesday (10 minutes per group)

1



CS621 Fall 2012

Software Security

Ben Ransford
ransford@cs.umass.edu

mailto:ransford@cs.umass.edu
mailto:ransford@cs.umass.edu


Software Security — Ben Ransford — CS621 Fall 2012 3



Software Security — Ben Ransford — CS621 Fall 2012 3



Software Security — Ben Ransford — CS621 Fall 2012 4

≈

Ross Anderson,
Security Engineering

Saltzer & Kaashoek,
P. of C. S. D.



Software Security — Ben Ransford — CS621 Fall 2012 5

“Security engineering is about building 
systems to remain dependable in the face 

of malice, error, or mischance.”



Software Security — Ben Ransford — CS621 Fall 2012 6

Security =
Policy + Mechanism + Assurance + Incentive



Software Security — Ben Ransford — CS621 Fall 2012 6

Security =
Policy + Mechanism + Assurance + Incentive

Insecurity ≈
How can I break this system?



Software Security — Ben Ransford — CS621 Fall 2012

Threat Modeling

7

• ... is your job in system design

• Think like an attacker

• Understand and prioritize incentives

• Imagine a realistic attacker



Software Security — Ben Ransford — CS621 Fall 2012

Attack Surface

• Which parts of your system interface with 
other stuff?

• Network ports, I/O

• Command-line inputs

• Dependencies on other systems

8



Software Security — Ben Ransford — CS621 Fall 2012

Attacker Incentives

• For each element of attack surface:

• What can a successful attacker gain?

• What’s it worth?

9



Software Security — Ben Ransford — CS621 Fall 2012 10



Software Security — Ben Ransford — CS621 Fall 2012 10



Software Security — Ben Ransford — CS621 Fall 2012 10



Software Security — Ben Ransford — CS621 Fall 2012 11

(Some) Kinds of Attackers

Value Example Attacker

Low Generic PC Script kiddie

Medium Personal bank 
account Phisher

High State nuclear 
program Another state



Software Security — Ben Ransford — CS621 Fall 2012

Script Kiddies

12

• Largely unskilled; main resource = time

• Use pre-packaged exploits

• May wish to sell compromised resources 
(e.g., sell zombie PCs to botnet)



Software Security — Ben Ransford — CS621 Fall 2012

Midrange “Hackers”

• Somewhat skilled; may have specific 
targets

• May be willing to use social engineering

• Motivations include fame, revenge, 
vandalism, $$$

13



Software Security — Ben Ransford — CS621 Fall 2012

High-End Hackers

• Deep understanding of target

• Write exploits

• These days, sell exploits for $$$$$

14



Software Security — Ben Ransford — CS621 Fall 2012

High-End Hackers

• Deep understanding of target

• Write exploits

• These days, sell exploits for $$$$$

14



Software Security — Ben Ransford — CS621 Fall 2012

Even Higher-End Hackers

15

• E.g., state agencies (NSA, Mossad)

• Specific targets for espionage or sabotage

• Advanced persistent threats — get into 
target and stay there



Software Security — Ben Ransford — CS621 Fall 2012 16



Software Security — Ben Ransford — CS621 Fall 2012 17

Cryptography
Do’s & don’ts

Note: cryptography != security



Software Security — Ben Ransford — CS621 Fall 2012

Rule #1

18

Don’t design your own cipher!
Use an existing one.

== Use AES.



Software Security — Ben Ransford — CS621 Fall 2012

Don’t pull a Mifare

19



Software Security — Ben Ransford — CS621 Fall 2012

Rule #2

20

Don’t rely on security through obscurity.
Your system’s design will become known.

== Assume only the keys are secret.

X



Software Security — Ben Ransford — CS621 Fall 2012

Rule #3

21

Don’t use randomness incorrectly or use 
predictable “randomess.”

Bad randomness makes attacks easy.

== Use TRNG or a good seeded PRNG



Software Security — Ben Ransford — CS621 Fall 2012 22

Good PRNG

• Doesn’t repeat itself (long period)

• Does use sources of “random” bits



Software Security — Ben Ransford — CS621 Fall 2012 22

Good PRNG

• Doesn’t repeat itself (long period)

• Does use sources of “random” bits



Software Security — Ben Ransford — CS621 Fall 2012 23

Bad PRNG

Easy to guess secrets!



Software Security — Ben Ransford — CS621 Fall 2012 23

Bad PRNG

Easy to guess secrets!



Software Security — Ben Ransford — CS621 Fall 2012

Note: Multiple PRNGs

24

(demo of Linux /dev/urandom vs. /dev/random)

Don’t use urandom when you want random.



Software Security — Ben Ransford — CS621 Fall 2012

Harping on Randomness

25



Software Security — Ben Ransford — CS621 Fall 2012

Harping on Randomness

25

“We found that 5.57% of TLS hosts and 9.60% of SSH 
hosts share public keys in an apparently vulnerable 

manner, due to either insufficient randomness during key 
generation or device default keys” (source: factorable.net)



Software Security — Ben Ransford — CS621 Fall 2012

Debian OpenSSL disaster

26

(Don’t trust your tools blindly!)



Software Security — Ben Ransford — CS621 Fall 2012

Greatest Hits
(and how not to get hit)

27

please put on your C/C++ hats



Software Security — Ben Ransford — CS621 Fall 2012

Buffer overflows
(super common)

28

strcpy(dest, user_supplied_input);



Software Security — Ben Ransford — CS621 Fall 2012

Use-after-free
(somewhat common)

29

void f (p_t *p) { ...; free(p); }

f(my_pointer);
*my_pointer = 0x1234;



Software Security — Ben Ransford — CS621 Fall 2012

Double free
(not all that common)

30

void f (p_t *p) { ...; free(p); }

f(my_pointer);
free(my_pointer);



Software Security — Ben Ransford — CS621 Fall 2012

Input validation

31



Software Security — Ben Ransford — CS621 Fall 2012

Cross-site scripting
(super super super common)

32

Hello my name is <script>stealStuff();</script>


