Reminders

* Project plan
due Tuesday Oct 30, 9 AM
Presentations: 10 min, Oct 30 and Nov 1, in class

* Next Tuesday: no lecture

Use time to work on project

* Next Thursday: Oct 25, guest lecture

Denver Airport Baggage System

* Billed as the most advanced system in the world.

* Goal: automate baggage handling through the
entire airport.

e Building the system resulted in the newly
completed airport sitting idle for 16 months

while engineers worked on getting the baggage
system to work.

— delay added half a billion dollars to the cost

Final system far smaller |
than original design.

Does not integrate
concourses.

Supports outbound flights
only on one concourse.

Everything else done
manually, with hand

tagging.

Denver Airport Baggage System

* The one-concourse part
that was kept:

scrapped soon after

because of $1 million
monthly maintenance cost

http://calleam.com/WTPF/?page id=2086

Los Angeles Air-Traffic Control System

* Voice communication system shut down
unexpectedly

e 400 airplanes lost contact

* Several were headed toward one another
* Pilots had to self-direct

 We got lucky

* A counter in the voice system counted down
from 232 ms (~50 days). Maintenance routinely
rebooted the system once per month.

http://spectrum.ieee.org/aerospace/aviation/lost-radio-contact-leaves-pilots-on-their-own

London Ambulance Service

 Computer-assisted dispatch system automated
deployment of ambulances

* Resulted in up to 11 hour waits

* 30 people died

 Shut down 2 days later

e Reason: system got out of sync with reality

* Tried againin 2011 and 2012 with a brand new
S29million system

~50 minute delays caused reverting to manual system

http://www0.cs.ucl.ac.uk/staff/A.Finkelstein/las/lascase0.9.pdf

Why do these failures matter?

* Design, requirements, specification matter.

 Butin the end, many of errors in those phases
can be caught during testing.

e Catching errors in testing has a high cost, but
much lower than in deployment.

Questions?

Computability

How many apples?

Can you answer without counting?

Let’s try an easier question:
Same number of apples as cats?

No counting!

Same number of apples as cats?
How do you know?

No counting!

What about now?

Let’s define “equal-size sets”

 Two sets are equal-sized if there exists a
1-to-1 mapping of elements of one set to the
elements of the other set

— No element maps to 2 or more elements
— No element maps to O elements

— There may be other mappings, but we only care if
one good one exists

Why is Yuriy asking these stupid questions?

 Comparing sizes of sets turns out to be very
Important in computing

* How many different programs can we write?
* How many different problems exist?

e We have to tackle infinite sets

Some infinite sets

* How many integers are there?

* How many even humbers are there?

* How can we compare two infinite sets?

Let’s forget about non-positive numbers for now

Integers and Odds

e | odds

1 1

2 3

3 5
4 7
5 9
6 11
7 13
8 15
n 2n-1

What about other sets?

* Integers and primes?

* Evens and odds?

* Perfect squares and perfect cubes?

Are all infinite sets the same size?

Are all infinite sets the same size?

How many reals are there?

e Let’s say you come up an ordered list of all
real numbers

(or a program that on input i prints a
unique real number)

e | will now, write down on the board, a real
number that’s not on your list

(or that your program never prints)

Sizes of infinity:

* Countably infinite: R,

integers, naturals, rationals, evens, odds,
primes, etc.

* Uncountably infinite: 2" ™°
irrationals, reals, reals between 0 and 1

There is an infinite number of different infinities!

How many different
computational problems are there?

Let’s come up with a simple definition of a problem:
A subset of the integers

So a problem may be to compute:
— Integers

— odds

— evens

— primes

Clearly this is a subset of all possible problems, so we
are underestimating the total number

How many different
computational problems are there?

same answer as:
How many different subsets of integers are there?

Counting sets of integers

e Let’s set we are looking at subsets of
{1,2,3,4,5}. How many subsets are there?

2 options: 1isinthe setoritis notin the set
e 2 options: 2 is in the set or it is not in the set

e S02°=32

How many different programs are there?

Let’s come up with a simple definition of a program
that would solve our type of problem:

e Takes as input a single integer (no limit)

* Does whatever computation it wants
(let’s say Java)

e QOutputs “yes” or “no”

Then a program can be characterized by the set of

integers it says “yes” to.
In other words, the problem it solves.

How many programs are there?

* Each program can be compiled down to a
binary.

* A binary is just a series of bits.
010101101001010111010

* How many different binaries are there?

not all binaries fit our form of a program, so we
are overestimating the number of programs.

How many programs are there?

same answer as:
How many different binary numbers are there?

Mismatch!

* There are N, (or fewer) different programs
we can write.

* There are (at least) ZNO different problems we
can attempt to solve.

So there must be lots of problems for

which we cannot write programs!

The overwhelming majority of
problems are undecidable

* Undecidable means no computer program can
solve this problem.

 Example:
Consider “deciding” if a program ever halts.

Halting problem

* Let’s say you wrote a program P that takes as
input a program Q and prints 1 if Q ever halts,
and O if Q gets stuck in an infinite loop.

* Let me write a new program R:
Input: program Q
simulate P on Q
1if P prints 0, halt
1f P prints 1, loop forever

Next class is Thursday

* Good luck on your projects!

