
Mahjong Manual

Yuriy Brun
ybrun@usc.edu

http://alum.mit.edu/www/brun

February 26, 2009

1 What is Mahjong?

Mahjong is a distributed software system that uses idle cycles on remote but networked computers
to solve NP-complete problems, such as 3-SAT , determining the structure of proteins, optimally
allocating resources, and many others. Mahjong is designed using the tile architectural style [1],
a biologically-inspired software architectural style that fascilitates distributing computationally in-
tensive and easily parallelizable problems onto large networks in a scalable, privacy-preserving, and
fault-tolerant manner. Mahjong is written in Java, is platform independent, and uses PrismMW,
a lightweight architecture-aware middleware [2], to ensure its compliance with the tile style.

2 Downloading Mahjong

In order to run Mahjong, every computer that will participate in the computation must run Java.
The JDK (Java Development Kit) is available from Sun Microsystems. All other necessary software,
such as the PrismMW libraries, comes with the Mahjong package.

The latest version of the Mahjong package can be downloaded from the Mahjong website.

3 Compiling Mahjong

The package you download should already contain the compiled .class files; however, if recompiling
the code is simple. Just make sure the PrismMW2 1.jar file is in your classpath (see for help on
how to manipulate the classpath) and compile all the include .java files. Mahjong has been tested
to compile with both javac and jikes.

For example, the following command should compile all the source code on Windows (the
classpath separator ; is what makes this command Widnows-specific):
javac -cp .;PrismMW2_1.jar

tileStyle*.java tileStyle\Prism*.java tileStyle\Prism\events*.java

4 Running a Simple Mahjong Application

Mahjong lets you distribute NP-complete problems onto nodes. In order to run Mahjong, in addition
to the binaries, you need a file that describes the problem (.tiles file) and a file that describes the
input to the problem (.seed file). The downloadable Mahjong package includes a sample .tiles file
(SubsetSum.tiles) for the NP-complete problem SubsetSum, and a sample .seed file (18.seed).

Mahjong Manual c©2009 Yuriy Brun February 26, 2009 Page 1 of 4

mailto:brun@alum.mit.edu
http://alum.mit.edu/www/brun
http://en.wikipedia.org/wiki/NP-complete
http://java.sun.com
http://csse.usc.edu/~ybrun/TileStyle
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/classpath.html
http://en.wikipedia.org/wiki/Subset_sum_problem

4.1 Deploying Mahjong on a Single Machine

Armed with Java, the binaries, and the .tiles and .seed file, you can run Mahjong on a single
machine. You first must make sure that the tileStyle directory and PrismMW2 1.jar file are in
your classpath. How to set this classpath depends on your platform, but Sun’s documentation on
classpaths can be quite helpful if you are having problems. To execute the example on a single
machine, execute the following command:
java tileStyle.TileStyleStarter server localhost 1 SubsetSum.tiles 18.seed 18.out 0

This command will execute the sample Mahjong problem on a single computer. The code will
run for a little bit, and eventually print something that contains the words “Found solution at”.
The output of the computation will be stored in the file 18.out. This output will contain a lot of
data about tiles that attach and timestamps on virtually everything that happens. Because many
processes are happening in parallel, the “Found solution at” is unlikely to be the last line of the
output and you might have to scroll up some to find it. Also, once a node finds a solution, it signs
off the network, causing all the other nodes to throw exceptions and complain. Thus the system is
likely to “quit ungracefully” by covering the screen with exceptions and possibly hanging Java.

You just deployed Mahjong on a single machine and solved a very simple SubsetSum problem!
While for now I have specified the command-line argument to Mahjong, Section 4.3 will describe

those arguments in detail and explain the values they may take on.

4.2 Deploying Mahjong on Multiple Machines

When deploying Mahjong on multiple machines, one machine acts as the server and the rest as
clients. All the computers that will work together must be able to reach each other via their
TCP/IP interfaces (e.g., ping each other). In other words, they need to all be able to access the
same local area network or the Internet. There are a number of connectivity issues that may arise
with firewalls, operating systems, or routers that this manual does not discuss.

At the start of the computation, the server waits for all the clients to sign in, and following
that, the computation begins. To start the server, execute the following command:
java tileStyle.TileStyleStarter server MYIP 2 SubsetSum.tiles 18.seed 18.out 0

Note that there is an argument MYIP and an argument 2 in the command. The MYIP keyword
must be replaced by the IP address or hostname of the server. The 2 tells the server that there
will be 2 machines (including the server) on this network. The server will sit patiently and wait for
the 2nd machine to join before proceeding. Increasing the 2 increases the number of machines the
server will use.

On the client machine(s) execute the following command:
java tileStyle.TileStyleStarter client MYIP SERVERIP

Note that there are arguments MYIP and SERVERIP in the command. MYIP must be replaced
with the IP address or hostname of the particular client executing this command. This step is
necessary because a computer might have multiple network adapters, multiple TPC/IP interfaces,
and multiple IP addresses, and Mahjong needs to know which one to use to access the other
computers. Similarly, SERVERIP must be replaced with the IP address of hostname of the server,
so the client knows whom to contact. If a client starts before the server, it will patiently wait for
the server to become available.

Once you run these commands, the client will sign into the server, they’ll exchange important
information, and the computation will start. The code will run for a little bit, and eventually print
something that contains the words “Found solution at” to the output file 18.out on the server
machine. This output will contain a lot of data about tiles that attach and timestamps on virtually

Mahjong Manual c©2009 Yuriy Brun February 26, 2009 Page 2 of 4

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/classpath.html
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/classpath.html

everything that happens. Because many processes are happening in parallel, the “Found solution
at” is unlikely to be the last line of the output and you might have to scroll up some to find it.
The clients will not have output files. Also, once a node finds a solution, it signs off the network,
causing all the other nodes to throw exceptions and complain. Thus the system is likely to “quit
ungracefully” by covering the screen with exceptions and possibly hanging Java.

You just deployed Mahjong on two or more machines and solved a very simple SubsetSum
problem!

4.3 Command-Line Arguments

When Mahjong starts on a computer, it either assumes the role of a server or a client. The first
command-line argument to Mahjong determines that role. When executing as a client, Mahjong
expects the following command line:
java tileStyle.TileStyleStarter client MYIP SERVERIP

Let’s examine the arguments:
MYIP The IP address or hostname of the particular client executing this command.
SERVERIP The IP address of hostname of the server.

When executing as a server, Mahjong expects the following command line:
java tileStyle.TileStyleStarter server MYIP NUM TILES SEED OUTFILE JOBID

Let’s examine the arguments:
MYIP The IP address or hostname of the server.
NUM The number of computers, including the server, that will participate in the

computation.
TILES The path to a .tiles file that describes the problem being solved.
SEED The path to a .seed file that describes the input to the problem being solved.
OUTFILE The path to the file that Mahjong will use to store output.
OUTFILE An ID for this job (necessary for some cluster distribution protocols).

5 Debugging Information

The are a number of procedures Mahjong follows that may be helpful to understand when debugging
the application. This section contains information on some of these procedures.

5.1 Ready, Set, Go Sign In Procedure

Before Mahjong can distribute computation, the server must collect the proper number of clients
and distribute some information to those clients. During the set up process, the clients and the
server go through the “ready, set, go” process:

Ready: Each client sends a “sign in” event to the server. Once the client sends this event, it is
ready. Once the server receives a sufficient number of such events, it is ready.

Set: The server creates data (addresses map) needed to send to each client and sends it out. Every
client and server create the appropriate number of virtual nodes and an incoming connection
port on each virtual node. Each client sends the server an “I am set” event. Once the server
receives a sufficient number of such events and creates its own virtual nodes and incoming
connections, it is also set.

Mahjong Manual c©2009 Yuriy Brun February 26, 2009 Page 3 of 4

Go: The server tells everyone that everyone is set and each virtual node tries to create connections
to all the other virtual nodes. Once each client finishes connections for all its virtual nodes,
it sends an “I am go” event to the server. Once the server receives a sufficient number of
such events and once its virtual nodes create all their connections, it is also go and starts the
computation.

References

[1] Yuriy Brun and Nenad Medvidovic. Preserving privacy in distributed computation via self-
assembly. Technical Report USC-CSSE-2008-819, Center for Software Engineering, University
of Southern California, 2008.

[2] Sam Malek, Marija Mikic-Rakic, and Nenad Medvidovic. A style-aware architectural middle-
ware for resource-constrained, distributed systems. IEEE Transactions on Software Engineering,
31(3):256–272, 2005.

Mahjong Manual c©2009 Yuriy Brun February 26, 2009 Page 4 of 4

	1 What is Mahjong?
	2 Downloading Mahjong
	3 Compiling Mahjong
	4 Running a Simple Mahjong Application
	4.1 Deploying Mahjong on a Single Machine
	4.2 Deploying Mahjong on Multiple Machines
	4.3 Command-Line Arguments

	5 Debugging Information
	5.1 Ready, Set, Go Sign In Procedure

