
Unlabeled data in NLP

CS 585, Fall 2017: Introduction to Natural Language Processing
http://people.cs.umass.edu/~brenocon/inlp2017

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Thursday, November 9, 17

http://people.cs.umass.edu/~brenocon/inlp2016
http://people.cs.umass.edu/~brenocon/inlp2016

• Lots of unlabeled data, not much labeled data.
How to use the unlabeled data?

• One trick: Learn lexical information (distributional/embeddings,
first-order co-occurrence, etc.)

• More general ML settings

• Unsupervised learning

• Semi-supervised learning

• More general linguistic/knowledge structure settings

• Relationships or events between entities

• Examples

• EM algorithm: learning a generative model with latent variables

• MNB/LDA document clusters, HMMs, translation...

• Brown word clustering: a weird unsupervised HMM

2

Thursday, November 9, 17

Expectation-Maximization

• For latent-variable learning
situations

• w: known

• z: unknown “nuisance” variable:
need to infer

• θ: want to learn

• Learning goal: argmaxθ P(w | θ)
= argmaxθ Σz P(w,z | θ)

• ... when parameter learning
would be easy if only you had z.

3

• EM is a “meta”-algorithm

• Initialize parameters.

• Iterate until convergence (or stop
early):

• (E step): Infer Q(z) := P(z | w, θ)

• (M step): Learn new
θ := argmaxθ EQ[log P(w,z | θ)]

• “Bootstrapping” intuition

• It will converge to a local maximum
solution to the original marginal
likelihood learning goal

Thursday, November 9, 17

4

Thursday, November 9, 17

5

Thursday, November 9, 17

EM performance

• Guaranteed to find a locally-maximum solution. Guaranteed
to converge.

• But can take a while

• Initialization-dependent

6

Johnson 2007, “Why doesn’t EM find
good HMM POS-taggers?”

H(T |Y) = H(T)� I(Y, T)
VI (Y, T) = H(Y |T) + H(T |Y)

As Meilǎ (2003) shows, VI is a metric on the space
of probability distributions whose value reflects the
divergence between the two distributions, and only
takes the value zero when the two distributions are
identical.

3 Maximum Likelihood via
Expectation-Maximization

There are several excellent textbook presentations of
Hidden Markov Models and the Forward-Backward
algorithm for Expectation-Maximization (Jelinek,
1997; Manning and Schütze, 1999; Bishop, 2006),
so we do not cover them in detail here. Conceptu-
ally, a Hidden Markov Model generates a sequence
of observations x = (x0, . . . , xn) (here, the words
of the corpus) by first using a Markov model to gen-
erate a sequence of hidden states y = (y0, . . . , yn)
(which will be mapped to POS tags during evalua-
tion as described above) and then generating each
word xi conditioned on its corresponding state yi.
We insert endmarkers at the beginning and ending
of the corpus and between sentence boundaries, and
constrain the estimator to associate endmarkers with
a state that never appears with any other observation
type (this means each sentence can be processed in-
dependently by first-order HMMs; these endmarkers
are ignored during evaluation).

In more detail, the HMM is specified by multi-
nomials �y and �y for each hidden state y, where
�y specifies the distribution over states following y
and �y specifies the distribution over observations x
given state y.

yi | yi�1 = y � Multi(�y)
xi | yi = y � Multi(�y)

(1)

We used the Forward-Backward algorithm to per-
form Expectation-Maximization, which is a proce-
dure that iteratively re-estimates the model param-
eters (�, �), converging on a local maximum of the
likelihood. Specifically, if the parameter estimate at
time � is (�(�),�(�)), then the re-estimated parame-
ters at time � + 1 are:

�(�+1)
y�|y = E[ny�,y]/E[ny] (2)

�(�+1)
x|y = E[nx,y]/E[ny]

6.95E+06

7.00E+06

7.05E+06

7.10E+06

7.15E+06

0 250 500 750 1000

–
lo

g
lik

el
ih

oo
d

Iteration

Figure 1: Variation in negative log likelihood with
increasing iterations for 10 EM runs from different
random starting points.

where nx,y is the number of times observation x oc-
curs with state y, ny�,y is the number of times state
y� follows y and ny is the number of occurences of
state y; all expectations are taken with respect to the
model (�(�),�(�)).

We took care to implement this and the other al-
gorithms used in this paper efficiently, since optimal
performance was often only achieved after several
hundred iterations. It is well-known that EM often
takes a large number of iterations to converge in like-
lihood, and we found this here too, as shown in Fig-
ure 1. As that figure makes clear, likelihood is still
increasing after several hundred iterations.

Perhaps more surprisingly, we often found dra-
matic changes in accuracy in the order of 5% occur-
ing after several hundred iterations, so we ran 1,000
iterations of EM in all of the experiments described
here; each run took approximately 2.5 days compu-
tation on a 3.6GHz Pentium 4. It’s well-known that
accuracy often decreases after the first few EM it-
erations (which we also observed); however in our
experiments we found that performance improves
again after 100 iterations and continues improving
roughly monotonically. Figure 2 shows how 1-to-1
accuracy varies with iteration during 10 runs from
different random starting points. Note that 1-to-1
accuracy at termination ranges from 0.38 to 0.45; a
spread of 0.07.

We obtained a dramatic speedup by working di-
rectly with probabilities and rescaling after each ob-
servation to avoid underflow, rather than working
with log probabilities (thanks to Yoshimasa Tsu-

298

Thursday, November 9, 17

Semi-supervised learning with EM

• “Semi-supervised”: combine unlabeled and labeled data

7

Thursday, November 9, 17

8

Thursday, November 9, 17

Word embeddings/clusters as features

• Two-phase strategy

• 1. Unsupervised learning of word
representations (embeddings or clusters)

• 2. Use word clusters as features for your
small-data supervised model

• Word embeddings in a linear model

• Turian et al. 2010: they work well in a CRF

• Scaling issue: since they go alongside
binary features

• (IMO, they work even better in nonlinear
models?)

• Or: Word clusters in a linear model

9

approach using a random tree, not two passes with
an updated tree and embeddings re-estimation.

7.2 Scaling of Word Embeddings
Like many NLP systems, the baseline system con-
tains only binary features. The word embeddings,
however, are real numbers that are not necessarily
in a bounded range. If the range of the word
embeddings is too large, they will exert more
influence than the binary features.

We generally found that embeddings had zero
mean. We can scale the embeddings by a hy-
perparameter, to control their standard deviation.
Assume that the embeddings are represented by a
matrix E:

E � � · E/stddev(E) (1)

� is a scaling constant that sets the new standard
deviation after scaling the embeddings.

(a)

 93.6

 93.8

 94

 94.2

 94.4

 94.6

 94.8

 0.001 0.01 0.1 1

Va
lid

at
io

n
F1

Scaling factor σ

C&W, 50-dim
HLBL, 50-dim

C&W, 200-dim
C&W, 100-dim
HLBL, 100-dim

C&W, 25-dim
baseline

(b)

 89

 89.5

 90

 90.5

 91

 91.5

 92

 92.5

 0.001 0.01 0.1 1

Va
lid

at
io

n
F1

Scaling factor σ

C&W, 200-dim
C&W, 100-dim
C&W, 25-dim
C&W, 50-dim

HLBL, 100-dim
HLBL, 50-dim

baseline

Figure 1: E�ect as we vary the scaling factor � (Equa-
tion 1) on the validation set F1. We experiment with
Collobert and Weston (2008) and HLBL embeddings of var-
ious dimensionality. (a) Chunking results. (b) NER results.

Figure 1 shows the e�ect of scaling factor �
on both supervised tasks. We were surprised
to find that on both tasks, across Collobert and
Weston (2008) and HLBL embeddings of various
dimensionality, that all curves had similar shapes
and optima. This is one contributions of our

work. In Turian et al. (2009), we were not
able to prescribe a default value for scaling the
embeddings. However, these curves demonstrate
that a reasonable choice of scale factor is such that
the embeddings have a standard deviation of 0.1.

7.3 Capacity of Word Representations

(a)

 94.1

 94.2

 94.3

 94.4

 94.5

 94.6

 94.7

 100 320 1000 3200

 25 50 100 200

Va
lid

at
io

n
F1

of Brown clusters

of embedding dimensions

C&W
HLBL

Brown
baseline

(b)

 90

 90.5

 91

 91.5

 92

 92.5

 100 320 1000 3200

 25 50 100 200

Va
lid

at
io

n
F1

of Brown clusters

of embedding dimensions

C&W
Brown
HLBL

baseline

Figure 2: E�ect as we vary the capacity of the word
representations on the validation set F1. (a) Chunking
results. (b) NER results.

There are capacity controls for the word
representations: number of Brown clusters, and
number of dimensions of the word embeddings.
Figure 2 shows the e�ect on the validation F1 as
we vary the capacity of the word representations.

In general, it appears that more Brown clusters
are better. We would like to induce 10000 Brown
clusters, however this would take several months.

In Turian et al. (2009), we hypothesized on
the basis of solely the HLBL NER curve that
higher-dimensional word embeddings would give
higher accuracy. Figure 2 shows that this hy-
pothesis is not true. For NER, the C&W curve is
almost flat, and we were suprised to find the even
25-dimensional C&W word embeddings work so
well. For chunking, 50-dimensional embeddings
had the highest validation F1 for both C&W and
HLBL. These curves indicates that the optimal
capacity of the word embeddings is task-specific.

390

Thursday, November 9, 17

Application: Social Media POS Tagging

• Any NLP system, starting with POS tagging, needs different
models/resources than traditional written English

• Annotate ~2300 tweets

• Train word clusters on 56 million tweets, use as features

10

Improved Part-of-Speech Tagging for Online Conversational Text
with Word Clusters

Olutobi Owoputi⇤ Brendan O’Connor⇤ Chris Dyer⇤
Kevin Gimpel† Nathan Schneider⇤ Noah A. Smith⇤

⇤School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
†Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

Corresponding author: brenocon@cs.cmu.edu

Abstract

We consider the problem of part-of-speech
tagging for informal, online conversational
text. We systematically evaluate the use of
large-scale unsupervised word clustering
and new lexical features to improve tagging
accuracy. With these features, our system
achieves state-of-the-art tagging results on
both Twitter and IRC POS tagging tasks;
Twitter tagging is improved from 90% to 93%
accuracy (more than 3% absolute). Quali-
tative analysis of these word clusters yields
insights about NLP and linguistic phenomena
in this genre. Additionally, we contribute the
first POS annotation guidelines for such text
and release a new dataset of English language
tweets annotated using these guidelines.
Tagging software, annotation guidelines, and
large-scale word clusters are available at:
http://www.ark.cs.cmu.edu/TweetNLP
This paper describes release 0.3 of the “CMU
Twitter Part-of-Speech Tagger” and annotated
data.

[This paper is forthcoming in Proceedings of
NAACL 2013; Atlanta, GA, USA.]

1 Introduction

Online conversational text, typified by microblogs,
chat, and text messages,1 is a challenge for natu-
ral language processing. Unlike the highly edited
genres that conventional NLP tools have been de-
veloped for, conversational text contains many non-
standard lexical items and syntactic patterns. These
are the result of unintentional errors, dialectal varia-
tion, conversational ellipsis, topic diversity, and cre-
ative use of language and orthography (Eisenstein,
2013). An example is shown in Fig. 1. As a re-
sult of this widespread variation, standard model-

1Also referred to as computer-mediated communication.

ikr
!

smh
G

he
O

asked
V

fir
P

yo
D

last
A

name
N

so
P

he
O

can
V

add
V

u
O

on
P

fb
^

lololol
!

Figure 1: Automatically tagged tweet showing nonstan-
dard orthography, capitalization, and abbreviation. Ignor-
ing the interjections and abbreviations, it glosses as He
asked for your last name so he can add you on Facebook.
The tagset is defined in Appendix A. Refer to Fig. 2 for
word clusters corresponding to some of these words.

ing assumptions that depend on lexical, syntactic,
and orthographic regularity are inappropriate. There
is preliminary work on social media part-of-speech
(POS) tagging (Gimpel et al., 2011), named entity
recognition (Ritter et al., 2011; Liu et al., 2011), and
parsing (Foster et al., 2011), but accuracy rates are
still significantly lower than traditional well-edited
genres like newswire. Even web text parsing, which
is a comparatively easier genre than social media,
lags behind newspaper text (Petrov and McDonald,
2012), as does speech transcript parsing (McClosky
et al., 2010).

To tackle the challenge of novel words and con-
structions, we create a new Twitter part-of-speech
tagger—building on previous work by Gimpel et
al. (2011)—that includes new large-scale distribu-
tional features. This leads to state-of-the-art results
in POS tagging for both Twitter and Internet Relay
Chat (IRC) text. We also annotated a new dataset of
tweets with POS tags, improved the annotations in
the previous dataset from Gimpel et al., and devel-
oped annotation guidelines for manual POS tagging
of tweets. We release all of these resources to the
research community:
• an open-source part-of-speech tagger for online

conversational text (§2);
• unsupervised Twitter word clusters (§3);

Thursday, November 9, 17

Hierarchical HMM-based word
clustering (“Brown clustering”)

• Only a little labeled data (2374 tweets)

• Lots of unlabeled data (56 million tweets): use for lexical
generalization

• Distributional hypothesis:
“you shall know a word by the company it keeps”

• Unsupervised HMM with hierarchical clusters
[Percy Liang (2005)’s version of Brown clustering]

• 1000 clusters over 217k word types

11
http://www.ark.cs.cmu.edu/TweetNLP/cluster_viewer.html

Thursday, November 9, 17

http://www.ark.cs.cmu.edu/TweetNLP/cluster_viewer.html
http://www.ark.cs.cmu.edu/TweetNLP/cluster_viewer.html

What does it learn?

• Orthographic normalizations

12

soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo sooooooooooo
soooooooooooo sooooooooooooo soso soooooooooooooo sooooooooooooooo soooooooooooooooo
sososo superrr sooooooooooooooooo ssooo so0o superrrr so0 soooooooooooooooooo sosososo
sooooooooooooooooooo ssoo sssooo soooooooooooooooooooo #too s0o ssoooo s00
sooooooooooooooooooooo so0o0o sososososo soooooooooooooooooooooo sssoooo ssooooo superrrrr
very2 s000 soooooooooooooooooooooooo sooooooooooooooooooooooooo sooooooooooooooooooooooo
so soooooooooooooooooooooooooo /so/ sssooooo sosososososo

so s0 -so so- $o /so //so

Thursday, November 9, 17

• Emoticons etc.
(Clusters/tagger useful for sentiment analysis: NRC-Canada SemEval 2013, 2014)

Thursday, November 9, 17

(Immediate?) future auxiliaries

14

gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne
goona gonnaa g0nna goina gonnah goingto gunnah gonaa gonan gunnna
going2 gonnnna gunnaa gonny gunaa quna goonna qona gonns goinna
gonnae qnna gonnaaa gnaa

tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa
qon boutaa funna finnah bouda boutah abouta fena bouttah boudda trinna
qne finnaa fitna aboutta goin2 bout2 finnna trynah finaa ginna bouttaa fna
try'na g0n trynn tyrna trna bouto finsta fnna tranna finta tryinna finnuh
tryingto boutto

• finna ~ “fixing to”

• tryna ~ “trying to”

• bouta ~ “about to”

Thursday, November 9, 17

Subject-AuxVerb constructs

15

i'd you'd we'd he'd they'd she'd who'd i’d u'd youd you’d iwould theyd icould we’d i`d
#whydopeople he’d i´d #iusedto they’d i'ld she’d #iwantsomeonewhowill i'de imust a:i'd
you`d yu'd icud l'd

you'll we'll it'll he'll they'll she'll it'd that'll u'll that'd youll ull you’ll itll there'll we’ll itd
there'd theyll this'll thatd thatll they’ll didja he’ll it’ll yu'll she’ll youl you`ll you'l you´ll
yull u'l it'l we´ll we`ll didya that’ll it’d he'l shit'll they'l theyl she'l everything'll he`ll
things'll u’ll this'd

i'll i’ll i'l i`ll i´ll i'lll l'll i\'ll i''ll -i'll /must @pretweeting she`ll

ill ima imma i'ma i'mma ican iwanna umma imaa #imthetypeto iwill amma
#menshouldnever igotta #whywouldyou #iwishicould #sometimesyouhaveto
#thoushallnot #ihatewhenpeople illl #thingspeopleshouldnotdo #howdareyou
#thingsgirlswantboystodo im'a #womenshouldnever #thingsblackgirlsdo immma iima
#ireallyhatewhenpeople ishould #thingspeopleshouldntdo #irefuseto itl
#howtospoilahoodrat iwont imight #thingsweusedtodoaskids ineeda
#thingswhitepeopledo we'l #whycantyoujust #whydogirls #everymanshouldknowhowto
#ushouldnt #howtopissyourgirloff #amanshouldnot #uwannaimpressme #realfriendsdont
immaa #ilovewhenyou[Mixed]

[Contraction
splitting?]

Thursday, November 9, 17

Improved Part-of-Speech Tagging for Online Conversational Text
with Word Clusters

Olutobi Owoputi⇤ Brendan O’Connor⇤ Chris Dyer⇤
Kevin Gimpel† Nathan Schneider⇤ Noah A. Smith⇤

⇤School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
†Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

Corresponding author: brenocon@cs.cmu.edu

Abstract

We consider the problem of part-of-speech
tagging for informal, online conversational
text. We systematically evaluate the use of
large-scale unsupervised word clustering
and new lexical features to improve tagging
accuracy. With these features, our system
achieves state-of-the-art tagging results on
both Twitter and IRC POS tagging tasks;
Twitter tagging is improved from 90% to 93%
accuracy (more than 3% absolute). Quali-
tative analysis of these word clusters yields
insights about NLP and linguistic phenomena
in this genre. Additionally, we contribute the
first POS annotation guidelines for such text
and release a new dataset of English language
tweets annotated using these guidelines.
Tagging software, annotation guidelines, and
large-scale word clusters are available at:
http://www.ark.cs.cmu.edu/TweetNLP
This paper describes release 0.3 of the “CMU
Twitter Part-of-Speech Tagger” and annotated
data.

[This paper is forthcoming in Proceedings of
NAACL 2013; Atlanta, GA, USA.]

1 Introduction

Online conversational text, typified by microblogs,
chat, and text messages,1 is a challenge for natu-
ral language processing. Unlike the highly edited
genres that conventional NLP tools have been de-
veloped for, conversational text contains many non-
standard lexical items and syntactic patterns. These
are the result of unintentional errors, dialectal varia-
tion, conversational ellipsis, topic diversity, and cre-
ative use of language and orthography (Eisenstein,
2013). An example is shown in Fig. 1. As a re-
sult of this widespread variation, standard model-

1Also referred to as computer-mediated communication.

ikr
!

smh
G

he
O

asked
V

fir
P

yo
D

last
A

name
N

so
P

he
O

can
V

add
V

u
O

on
P

fb
^

lololol
!

Figure 1: Automatically tagged tweet showing nonstan-
dard orthography, capitalization, and abbreviation. Ignor-
ing the interjections and abbreviations, it glosses as He
asked for your last name so he can add you on Facebook.
The tagset is defined in Appendix A. Refer to Fig. 2 for
word clusters corresponding to some of these words.

ing assumptions that depend on lexical, syntactic,
and orthographic regularity are inappropriate. There
is preliminary work on social media part-of-speech
(POS) tagging (Gimpel et al., 2011), named entity
recognition (Ritter et al., 2011; Liu et al., 2011), and
parsing (Foster et al., 2011), but accuracy rates are
still significantly lower than traditional well-edited
genres like newswire. Even web text parsing, which
is a comparatively easier genre than social media,
lags behind newspaper text (Petrov and McDonald,
2012), as does speech transcript parsing (McClosky
et al., 2010).

To tackle the challenge of novel words and con-
structions, we create a new Twitter part-of-speech
tagger—building on previous work by Gimpel et
al. (2011)—that includes new large-scale distribu-
tional features. This leads to state-of-the-art results
in POS tagging for both Twitter and Internet Relay
Chat (IRC) text. We also annotated a new dataset of
tweets with POS tags, improved the annotations in
the previous dataset from Gimpel et al., and devel-
oped annotation guidelines for manual POS tagging
of tweets. We release all of these resources to the
research community:
• an open-source part-of-speech tagger for online

conversational text (§2);
• unsupervised Twitter word clusters (§3);

Binary path Top words (by frequency)
A1 111010100010 lmao lmfao lmaoo lmaooo hahahahaha lool ctfu rofl loool lmfaoo lmfaooo lmaoooo lmbo lololol

A2 111010100011 haha hahaha hehe hahahaha hahah aha hehehe ahaha hah hahahah kk hahaa ahah
A3 111010100100 yes yep yup nope yess yesss yessss ofcourse yeap likewise yepp yesh yw yuup yus
A4 111010100101 yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo
A5 11101011011100 smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying

B 011101011 u yu yuh yhu uu yuu yew y0u yuhh youh yhuu iget yoy yooh yuo yue juu dya youz yyou

C 11100101111001 w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains

D 111101011000 facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora

E1 0011001 tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon
E2 0011000 gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona

F 0110110111 soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo

G1 11101011001010 ;) :p :-) xd ;-) ;d (; :3 ;p =p :-p =)) ;] xdd #gno xddd >:) ;-p >:d 8-) ;-d
G2 11101011001011 :) (: =) :)) :] :’) =] ^_^ :))) ^.^ [: ;)) ((: ^__^ (= ^-^ :))))
G3 1110101100111 :(:/ -_- -.- :-(:’(d: :| :s -__- =(=/ >.< -___- :-/ </3 :\ -____- ;(/: :((>_< =[:[#fml
G4 111010110001 <3 xoxo <33 xo <333 #love s2 <URL-twitition.com> #neversaynever <3333

Figure 2: Example word clusters (HMM classes): we list the most probable words, starting with the most probable, in
descending order. Boldfaced words appear in the example tweet (Figure 1). The binary strings are root-to-leaf paths
through the binary cluster tree. For example usage, see e.g. search.twitter.com, bing.com/social and
urbandictionary.com.

3.1 Clustering Method

We obtained hierarchical word clusters via Brown
clustering (Brown et al., 1992) on a large set of
unlabeled tweets.4 The algorithm partitions words
into a base set of 1,000 clusters, and induces a hi-
erarchy among those 1,000 clusters with a series of
greedy agglomerative merges that heuristically opti-
mize the likelihood of a hidden Markov model with a
one-class-per-lexical-type constraint. Not only does
Brown clustering produce effective features for dis-
criminative models, but its variants are better unsu-
pervised POS taggers than some models developed
nearly 20 years later; see comparisons in Blunsom
and Cohn (2011). The algorithm is attractive for our
purposes since it scales to large amounts of data.

When training on tweets drawn from a single
day, we observed time-specific biases (e.g., nu-
merical dates appearing in the same cluster as the
word tonight), so we assembled our unlabeled data
from a random sample of 100,000 tweets per day
from September 10, 2008 to August 14, 2012,
and filtered out non-English tweets (about 60% of
the sample) using langid.py (Lui and Baldwin,
2012).5 Each tweet was processed with our to-

4As implemented by Liang (2005), v. 1.3: https://
github.com/percyliang/brown-cluster

5https://github.com/saffsd/langid.py

kenizer and lowercased. We normalized all at-
mentions to h@MENTIONi and URLs/email ad-
dresses to their domains (e.g. http://bit.ly/
dP8rR8) hURL-bit.lyi). In an effort to reduce
spam, we removed duplicated tweet texts (this also
removes retweets) before word clustering. This
normalization and cleaning resulted in 56 million
unique tweets (847 million tokens). We set the
clustering software’s count threshold to only cluster
words appearing 40 or more times, yielding 216,856
word types, which took 42 hours to cluster on a sin-
gle CPU.

3.2 Cluster Examples

Fig. 2 shows example clusters. Some of the chal-
lenging words in the example tweet (Fig. 1) are high-
lighted. The term lololol (an extension of lol for
“laughing out loud”) is grouped with a large number
of laughter acronyms (A1: “laughing my (fucking)
ass off,” “cracking the fuck up”). Since expressions
of laughter are so prevalent on Twitter, the algorithm
creates another laughter cluster (A1’s sibling A2),
that tends to have onomatopoeic, non-acronym vari-
ants (e.g., haha). The acronym ikr (“I know, right?”)
is grouped with expressive variations of “yes” and
“no” (A4). Note that A1–A4 are grouped in a fairly
specific subtree; and indeed, in this message ikr and

Binary path Top words (by frequency)
A1 111010100010 lmao lmfao lmaoo lmaooo hahahahaha lool ctfu rofl loool lmfaoo lmfaooo lmaoooo lmbo lololol

A2 111010100011 haha hahaha hehe hahahaha hahah aha hehehe ahaha hah hahahah kk hahaa ahah
A3 111010100100 yes yep yup nope yess yesss yessss ofcourse yeap likewise yepp yesh yw yuup yus
A4 111010100101 yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo
A5 11101011011100 smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying

B 011101011 u yu yuh yhu uu yuu yew y0u yuhh youh yhuu iget yoy yooh yuo yue juu dya youz yyou

C 11100101111001 w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains

D 111101011000 facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora

E1 0011001 tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon
E2 0011000 gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona

F 0110110111 soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo

G1 11101011001010 ;) :p :-) xd ;-) ;d (; :3 ;p =p :-p =)) ;] xdd #gno xddd >:) ;-p >:d 8-) ;-d
G2 11101011001011 :) (: =) :)) :] :’) =] ^_^ :))) ^.^ [: ;)) ((: ^__^ (= ^-^ :))))
G3 1110101100111 :(:/ -_- -.- :-(:’(d: :| :s -__- =(=/ >.< -___- :-/ </3 :\ -____- ;(/: :((>_< =[:[#fml
G4 111010110001 <3 xoxo <33 xo <333 #love s2 <URL-twitition.com> #neversaynever <3333

Figure 2: Example word clusters (HMM classes): we list the most probable words, starting with the most probable, in
descending order. Boldfaced words appear in the example tweet (Figure 1). The binary strings are root-to-leaf paths
through the binary cluster tree. For example usage, see e.g. search.twitter.com, bing.com/social and
urbandictionary.com.

3.1 Clustering Method

We obtained hierarchical word clusters via Brown
clustering (Brown et al., 1992) on a large set of
unlabeled tweets.4 The algorithm partitions words
into a base set of 1,000 clusters, and induces a hi-
erarchy among those 1,000 clusters with a series of
greedy agglomerative merges that heuristically opti-
mize the likelihood of a hidden Markov model with a
one-class-per-lexical-type constraint. Not only does
Brown clustering produce effective features for dis-
criminative models, but its variants are better unsu-
pervised POS taggers than some models developed
nearly 20 years later; see comparisons in Blunsom
and Cohn (2011). The algorithm is attractive for our
purposes since it scales to large amounts of data.

When training on tweets drawn from a single
day, we observed time-specific biases (e.g., nu-
merical dates appearing in the same cluster as the
word tonight), so we assembled our unlabeled data
from a random sample of 100,000 tweets per day
from September 10, 2008 to August 14, 2012,
and filtered out non-English tweets (about 60% of
the sample) using langid.py (Lui and Baldwin,
2012).5 Each tweet was processed with our to-

4As implemented by Liang (2005), v. 1.3: https://
github.com/percyliang/brown-cluster

5https://github.com/saffsd/langid.py

kenizer and lowercased. We normalized all at-
mentions to h@MENTIONi and URLs/email ad-
dresses to their domains (e.g. http://bit.ly/
dP8rR8) hURL-bit.lyi). In an effort to reduce
spam, we removed duplicated tweet texts (this also
removes retweets) before word clustering. This
normalization and cleaning resulted in 56 million
unique tweets (847 million tokens). We set the
clustering software’s count threshold to only cluster
words appearing 40 or more times, yielding 216,856
word types, which took 42 hours to cluster on a sin-
gle CPU.

3.2 Cluster Examples

Fig. 2 shows example clusters. Some of the chal-
lenging words in the example tweet (Fig. 1) are high-
lighted. The term lololol (an extension of lol for
“laughing out loud”) is grouped with a large number
of laughter acronyms (A1: “laughing my (fucking)
ass off,” “cracking the fuck up”). Since expressions
of laughter are so prevalent on Twitter, the algorithm
creates another laughter cluster (A1’s sibling A2),
that tends to have onomatopoeic, non-acronym vari-
ants (e.g., haha). The acronym ikr (“I know, right?”)
is grouped with expressive variations of “yes” and
“no” (A4). Note that A1–A4 are grouped in a fairly
specific subtree; and indeed, in this message ikr and

Binary path Top words (by frequency)
A1 111010100010 lmao lmfao lmaoo lmaooo hahahahaha lool ctfu rofl loool lmfaoo lmfaooo lmaoooo lmbo lololol

A2 111010100011 haha hahaha hehe hahahaha hahah aha hehehe ahaha hah hahahah kk hahaa ahah
A3 111010100100 yes yep yup nope yess yesss yessss ofcourse yeap likewise yepp yesh yw yuup yus
A4 111010100101 yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo
A5 11101011011100 smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying

B 011101011 u yu yuh yhu uu yuu yew y0u yuhh youh yhuu iget yoy yooh yuo yue juu dya youz yyou

C 11100101111001 w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains

D 111101011000 facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora

E1 0011001 tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon
E2 0011000 gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona

F 0110110111 soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo

G1 11101011001010 ;) :p :-) xd ;-) ;d (; :3 ;p =p :-p =)) ;] xdd #gno xddd >:) ;-p >:d 8-) ;-d
G2 11101011001011 :) (: =) :)) :] :’) =] ^_^ :))) ^.^ [: ;)) ((: ^__^ (= ^-^ :))))
G3 1110101100111 :(:/ -_- -.- :-(:’(d: :| :s -__- =(=/ >.< -___- :-/ </3 :\ -____- ;(/: :((>_< =[:[#fml
G4 111010110001 <3 xoxo <33 xo <333 #love s2 <URL-twitition.com> #neversaynever <3333

Figure 2: Example word clusters (HMM classes): we list the most probable words, starting with the most probable, in
descending order. Boldfaced words appear in the example tweet (Figure 1). The binary strings are root-to-leaf paths
through the binary cluster tree. For example usage, see e.g. search.twitter.com, bing.com/social and
urbandictionary.com.

3.1 Clustering Method

We obtained hierarchical word clusters via Brown
clustering (Brown et al., 1992) on a large set of
unlabeled tweets.4 The algorithm partitions words
into a base set of 1,000 clusters, and induces a hi-
erarchy among those 1,000 clusters with a series of
greedy agglomerative merges that heuristically opti-
mize the likelihood of a hidden Markov model with a
one-class-per-lexical-type constraint. Not only does
Brown clustering produce effective features for dis-
criminative models, but its variants are better unsu-
pervised POS taggers than some models developed
nearly 20 years later; see comparisons in Blunsom
and Cohn (2011). The algorithm is attractive for our
purposes since it scales to large amounts of data.

When training on tweets drawn from a single
day, we observed time-specific biases (e.g., nu-
merical dates appearing in the same cluster as the
word tonight), so we assembled our unlabeled data
from a random sample of 100,000 tweets per day
from September 10, 2008 to August 14, 2012,
and filtered out non-English tweets (about 60% of
the sample) using langid.py (Lui and Baldwin,
2012).5 Each tweet was processed with our to-

4As implemented by Liang (2005), v. 1.3: https://
github.com/percyliang/brown-cluster

5https://github.com/saffsd/langid.py

kenizer and lowercased. We normalized all at-
mentions to h@MENTIONi and URLs/email ad-
dresses to their domains (e.g. http://bit.ly/
dP8rR8) hURL-bit.lyi). In an effort to reduce
spam, we removed duplicated tweet texts (this also
removes retweets) before word clustering. This
normalization and cleaning resulted in 56 million
unique tweets (847 million tokens). We set the
clustering software’s count threshold to only cluster
words appearing 40 or more times, yielding 216,856
word types, which took 42 hours to cluster on a sin-
gle CPU.

3.2 Cluster Examples

Fig. 2 shows example clusters. Some of the chal-
lenging words in the example tweet (Fig. 1) are high-
lighted. The term lololol (an extension of lol for
“laughing out loud”) is grouped with a large number
of laughter acronyms (A1: “laughing my (fucking)
ass off,” “cracking the fuck up”). Since expressions
of laughter are so prevalent on Twitter, the algorithm
creates another laughter cluster (A1’s sibling A2),
that tends to have onomatopoeic, non-acronym vari-
ants (e.g., haha). The acronym ikr (“I know, right?”)
is grouped with expressive variations of “yes” and
“no” (A4). Note that A1–A4 are grouped in a fairly
specific subtree; and indeed, in this message ikr and

Binary path Top words (by frequency)
A1 111010100010 lmao lmfao lmaoo lmaooo hahahahaha lool ctfu rofl loool lmfaoo lmfaooo lmaoooo lmbo lololol

A2 111010100011 haha hahaha hehe hahahaha hahah aha hehehe ahaha hah hahahah kk hahaa ahah
A3 111010100100 yes yep yup nope yess yesss yessss ofcourse yeap likewise yepp yesh yw yuup yus
A4 111010100101 yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo
A5 11101011011100 smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying

B 011101011 u yu yuh yhu uu yuu yew y0u yuhh youh yhuu iget yoy yooh yuo yue juu dya youz yyou

C 11100101111001 w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains

D 111101011000 facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora

E1 0011001 tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon
E2 0011000 gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona

F 0110110111 soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo

G1 11101011001010 ;) :p :-) xd ;-) ;d (; :3 ;p =p :-p =)) ;] xdd #gno xddd >:) ;-p >:d 8-) ;-d
G2 11101011001011 :) (: =) :)) :] :’) =] ^_^ :))) ^.^ [: ;)) ((: ^__^ (= ^-^ :))))
G3 1110101100111 :(:/ -_- -.- :-(:’(d: :| :s -__- =(=/ >.< -___- :-/ </3 :\ -____- ;(/: :((>_< =[:[#fml
G4 111010110001 <3 xoxo <33 xo <333 #love s2 <URL-twitition.com> #neversaynever <3333

Figure 2: Example word clusters (HMM classes): we list the most probable words, starting with the most probable, in
descending order. Boldfaced words appear in the example tweet (Figure 1). The binary strings are root-to-leaf paths
through the binary cluster tree. For example usage, see e.g. search.twitter.com, bing.com/social and
urbandictionary.com.

3.1 Clustering Method

We obtained hierarchical word clusters via Brown
clustering (Brown et al., 1992) on a large set of
unlabeled tweets.4 The algorithm partitions words
into a base set of 1,000 clusters, and induces a hi-
erarchy among those 1,000 clusters with a series of
greedy agglomerative merges that heuristically opti-
mize the likelihood of a hidden Markov model with a
one-class-per-lexical-type constraint. Not only does
Brown clustering produce effective features for dis-
criminative models, but its variants are better unsu-
pervised POS taggers than some models developed
nearly 20 years later; see comparisons in Blunsom
and Cohn (2011). The algorithm is attractive for our
purposes since it scales to large amounts of data.

When training on tweets drawn from a single
day, we observed time-specific biases (e.g., nu-
merical dates appearing in the same cluster as the
word tonight), so we assembled our unlabeled data
from a random sample of 100,000 tweets per day
from September 10, 2008 to August 14, 2012,
and filtered out non-English tweets (about 60% of
the sample) using langid.py (Lui and Baldwin,
2012).5 Each tweet was processed with our to-

4As implemented by Liang (2005), v. 1.3: https://
github.com/percyliang/brown-cluster

5https://github.com/saffsd/langid.py

kenizer and lowercased. We normalized all at-
mentions to h@MENTIONi and URLs/email ad-
dresses to their domains (e.g. http://bit.ly/
dP8rR8) hURL-bit.lyi). In an effort to reduce
spam, we removed duplicated tweet texts (this also
removes retweets) before word clustering. This
normalization and cleaning resulted in 56 million
unique tweets (847 million tokens). We set the
clustering software’s count threshold to only cluster
words appearing 40 or more times, yielding 216,856
word types, which took 42 hours to cluster on a sin-
gle CPU.

3.2 Cluster Examples

Fig. 2 shows example clusters. Some of the chal-
lenging words in the example tweet (Fig. 1) are high-
lighted. The term lololol (an extension of lol for
“laughing out loud”) is grouped with a large number
of laughter acronyms (A1: “laughing my (fucking)
ass off,” “cracking the fuck up”). Since expressions
of laughter are so prevalent on Twitter, the algorithm
creates another laughter cluster (A1’s sibling A2),
that tends to have onomatopoeic, non-acronym vari-
ants (e.g., haha). The acronym ikr (“I know, right?”)
is grouped with expressive variations of “yes” and
“no” (A4). Note that A1–A4 are grouped in a fairly
specific subtree; and indeed, in this message ikr and

“non-standard
prepositions”

“interjections”

“online service
names”

“hashtag-y
interjections”??

Application: Social Media POS Tagging

Thursday, November 9, 17

Highest-weighted POS–treenode features hierarchical
structure gives multiresolutional generalization

17

We approach part-of-speech tagging for

informal, online conversational text

using large-scale unsupervised word
clustering and new lexical features. Our
system achieves state-of-the-art tagging
results on both Twitter and IRC data.
Additionally, we contribute the first POS
annotation guidelines for such text and
release a new dataset of English language
tweets annotated using these guidelines.

Improved PartImproved Part--ofof--Speech Tagging for Online Conversational Text with Word ClustersSpeech Tagging for Online Conversational Text with Word Clusters

Word Clusters

Tagger Features
! Hierarchical word clusters via Brown clustering
(Brown et al., 1992) on a sample of 56M tweets
! Surrounding words/clusters
! Current and previous tags
! Tag dict. constructed from WSJ, Brown corpora
! Tag dict. entries projected to Metaphone
encodings
! Name lists from Freebase, Moby Words, Names
Corpus
! Emoticon, hashtag, @mention, URL patterns

Olutobi Owoputi* Brendan O’Connor* Chris Dyer* Kevin Gimpel+ Nathan Schneider* Noah A. Smith*

*School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
+Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

Highest Weighted Clusters

Speed
Tagger: 800 tweets/s (compared to 20 tweets/s previously)
Tokenizer: 3,500 tweets/s

Software & Data Release
! Improved emoticon detector and tweet tokenizer
! Newly annotated evaluation set, fixes to previous annotations

Examples

RVVVOPNDVP

NowHateingStartCuldYallSoCroudDaShakeBoutta

Results
Our tagger achieves state-of-the-art results in POS tagging
for each dataset:

O

he
V

can
V

add
O

u
P

on
^

fb lolololsonamelastyofiraskedhesmhikr
!PNADPVOG!

or n & and103&100110*

you yall u it mine everything nothing something anyone

someone everyone nobody

899O11101*

do did kno know care mean hurts hurt say realize believe

worry understand forget agree remember love miss hate

think thought knew hope wish guess bet have

29267V01*

the da my your ur our their his378D1101*

young sexy hot slow dark low interesting easy important

safe perfect special different random short quick bad crazy

serious stupid weird lucky sad

6510A111110*

x <3 :d :p :) :o :/2798E1110101100*

i'm im you're we're he's there's its it's428L11000*

lol lmao haha yes yea oh omg aww ah btw wow thanks

sorry congrats welcome yay ha hey goodnight hi dear

please huh wtf exactly idk bless whatever well ok

8160! 11101010*

Most common word in each cluster with prefixTypesTagCluster prefix

Dev set accuracy using only clusters as featuresAccuracy on NPSCHATTEST corpus

(incl. system messages)

Tagset

Datasets

Tagger, tokenizer, and data all released at:

www.ark.cs.cmu.edu/TweetNLP

Accuracy on RITTERTW corpus

Dev set accuracy using only clusters as featuresAccuracy on NPSCHATTEST corpus

(incl. system messages)

Accuracy on RITTERTW corpus

Dev set accuracy using only clusters as featuresAccuracy on NPSCHATTEST corpus

(incl. system messages)

Model
Discriminative sequence model (MEMM)
with L1/L2 regularization

Thursday, November 9, 17

18

Clusters help POS tagging
85 86 87 88 89 90 91 92 93 94

no-clusters,-tagdict,-namelist

just-clusters-and-transitions

no-clusters

no-tagdict,-namelist

all

Test set accuracy
85 86 87 88 89 90 91 92 93 94

words

just3clusters

words+dicts

words+clusters

words+clusters+dicts

“words”: all
handcrafted

features

• A little annotation + lots of unlabeled data

• Unsupervised word representation learning (clusters,
embeddings) is a crucial technique in NLP

85 86 87 88 89 90 91 92 93 94

words

just3clusters

words+dicts

words+clusters

words+clusters+dicts

Thursday, November 9, 17

